Lecture 15: Homotopy of Paths

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Definition: let *E* be an open set

Suppose that γ_0 and γ_1 are closed paths from $t \in [0, 1]$ into *E*. Then γ_0 is homotopic to γ_1 in *E* if there is a continuous function

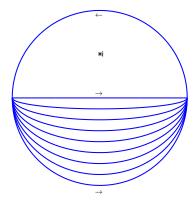
 $h(\boldsymbol{s},t)\,:\,[\boldsymbol{0},\boldsymbol{1}]\times[\boldsymbol{0},\boldsymbol{1}]\rightarrow \boldsymbol{E}$

so $h(0, t) = \gamma_0(t)$, $h(1, t) = \gamma_1(t)$, and for each $0 \le s \le 1$ the curve $\gamma_s(t) := h(s, t)$ is a closed path in *E*.

- Loosely speaking: there is a continuous family of paths γ_s that moves from γ₀ to γ₁, and which stays inside *E*.
- Any two paths in $\mathbb C$ are homotopic in $\mathbb C,$ by letting

$$\gamma_{s}(t) = (1 - s)\gamma_{0}(t) + s\gamma_{1}(t)$$

We say γ₀ is *homotopic to a point* if γ₀ is homotopic to γ₁, where γ₁ is constant (i.e. γ₁(t) = z₀ for all t, some z₀ ∈ E).



Example: the circle is homotopic to the upper semi-circle in $\mathbb{C} \setminus \{i\}$.

• Writing h(s, t) is a bother (and must use parameter $t \in [0, 1]$)

$$h(s,t) = \begin{cases} e^{2\pi i t}, & 0 \le t \le \frac{1}{2}, \\ (1-s)e^{2\pi i t} + s(4t-3), & \frac{1}{2} \le t \le 1. \end{cases}$$

• We rarely actually write out h(s, t).

Topological Definition

A connected open set $E \subset \mathbb{C}$ is simply connected if every closed path in *E* is homotopic to a point (can be any point in *E*).

Example: every convex open set is simply connected.

$$h(s,t) = (1-s)\gamma_0(t) + s z_1$$
, any $z_1 \in E$.

Definition: a set $E \subset \mathbb{C}$ is star-shaped about the point $z_1 \in E$ if *E* contains the straight line segment $[z_0, z_1]$ for every $z_0 \in E$.

- A star-shaped domain is simply connected: h(s, t) as above.
- $\mathbb{C} \setminus (-\infty, 0]$ is star-shaped about $z_1 = 1$.
- $\mathbb{C} \setminus \{[i, +i\infty) \cup [-i, -i\infty) \text{ is star-shaped about } z_1 = 0.$

Theorem 4.6.9

Suppose γ_0 is homotopic to γ_1 in *E*. Then $\operatorname{ind}_{\gamma_1}(z) = \operatorname{ind}_{\gamma_0}(z)$ for all points $z \in \mathbb{C} \setminus E$.

Proof. If $z \notin E$, then $\operatorname{ind}_{\gamma_s}(z)$ is defined for all $s \in [0, 1]$, where $\gamma_s(t) = h(s, t)$ is a homotopy of γ_0 to γ_1 . We'll show that

 $\operatorname{ind}_{\gamma_s}(z)$ is a continuous function of $s \in [0, 1]$ if $z \notin E$

thus it's constant since it can have only integer values. Write

$$\operatorname{ind}_{\gamma_s}(z) = \frac{1}{2\pi i} \int_0^1 \frac{1}{\gamma_s(t) - z} \frac{d\gamma_s(t)}{dt} dt$$

by uniform continuity of the integrand in *s*, the integral is continuous in *s*.

Theorem 4.6.10

Suppose γ_0 is homotopic to γ_1 in *E*. If *f* is analytic on *E*, then $\int_{\gamma_1} f(z) dz = \int_{\gamma_0} f(z) dz.$ So, if *E* is simply connected, then $\int_{\gamma} f(z) dz = 0$ for every closed path in *E*, if *f* is analytic on *E*.

Proof. Consider the cycle $\Gamma = \gamma_1 - \gamma_0$ in *E*. Then

$$\operatorname{ind}_{\Gamma}(z) = \operatorname{ind}_{\gamma_1}(z) - \operatorname{ind}_{\gamma_0}(z) = 0 \text{ if } z \notin E.$$

By the Cauchy Integral Theorem for cycles, if f is analytic on E

$$0 = \int_{\Gamma} f(z) dz = \int_{\gamma_1} f(z) dz - \int_{\gamma_0} f(z) dz$$

If *E* is simply connected, take $\gamma_1 = z_1$, note $\int_{\{z_1\}} f(z) dz = 0$.

• Topological simple connectivity implies our earlier definition:

 $\operatorname{ind}_{\gamma}(z) = 0$ for all closed paths in *E*, all $z \notin E$

since $\operatorname{ind}_{\gamma_1}(z) = 0$ if γ_1 is a constant path, and $z \neq z_1$.

• Converse also holds, but is much more difficult to prove.

What's important for us is that, whichever definition you verify

On a simply connected set E

• Every analytic function has an anti-derivative on E.

•
$$\int_{\gamma} f(z) dz = 0$$
 if γ is a closed path in *E* and *f* analytic on *E*.