Lecture 22: Conformal Mappings

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Conformal mappings on the plane

Consider a differentiable mapping f(x, y) = (u(x, y), v(x, y)), and the linearization of f at a point (x, y):

$$\begin{bmatrix} u(x + \Delta x, y + \Delta y) \\ v(x + \Delta x, y + \Delta y) \end{bmatrix} \approx \begin{bmatrix} u(x, y) \\ v(x, y) \end{bmatrix} + Df(x, y) \cdot \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

where
$$Df(x, y) = \begin{bmatrix} u_x(x, y) & u_y(x, y) \\ v_x(x, y) & v_y(x, y) \end{bmatrix}$$

Geometric Definition of conformal

The map f is conformal if, at each (x, y), the matrix Df(x, y) is non-singular and angle-preserving. Equivalently,

$$Df(x,y) = \begin{bmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \cdot \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

where r and θ depend on (x, y), and $r \neq 0$.

Lemma

f(x,y) = (u(x,y), v(x,y)) is conformal if and only if the C-R equations, $u_x = v_y$ and $u_y = -v_x$ hold, and $Df \neq 0$.

Proof. If
$$\begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix}$$
 then C-R eqn's hold.

Conversely, C-R eqn's say
$$\begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$
 takes the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

The point (a, b) lies on the circle of radius $r = \sqrt{a^2 + b^2}$, so we can write $a = r \cos \theta$, $b = r \sin \theta$, for some θ .

Corollary

An analytic function f(z) is conformal at points where $f'(z) \neq 0$, where we identify the complex numbers \mathbb{C} with the plane \mathbb{R}^2 .

Remark. If write $f'(z) = re^{i\theta}$, then get the same r, θ above.

Grid representation of conformal map $z \rightarrow e^z$

Grid representation of conformal map $z o z^{rac{1}{2}}$

Conformal equivalence

Definition

We say two open sets U and V in $\mathbb C$ are conformally equivalent if there is an analytic map $f:U\to V$ that is 1-1 and onto. Such an f is called a conformal equivalence between U and V.

• $f^{-1}(w)$ is then a conformal equivalence between V and U.

Examples.

• $f(z) = e^z$ is a conformal equivalence between

$$U = \{z : -\pi < \operatorname{Im}(z) < \pi\}$$
 and $V = \mathbb{C} \setminus (-\infty, 0]$

• $f(z) = z^{\frac{1}{2}}$ is a conformal equivalence between

$$U = \{z : Im(z) > 0\}$$
 and $V = \{w : Im(w) > 0 \text{ and } Re(w) > 0\}$

$$\{z: \mathsf{Re}(z) \in (-\frac{\pi}{2}, \frac{\pi}{2})\} \to \mathbb{C} \setminus (-i\infty, -i] \cup [i, i\infty)$$

