Lecture 22: Conformal Mappings

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Conformal mappings on the plane

Consider a differentiable mapping $f(x, y)=(u(x, y), v(x, y))$, and the linearization of f at a point (x, y) :

$$
\left[\begin{array}{l}
u(x+\Delta x, y+\Delta y) \\
v(x+\Delta x, y+\Delta y)
\end{array}\right] \approx\left[\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right]+D f(x, y) \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]
$$

where $\quad D f(x, y)=\left[\begin{array}{ll}u_{x}(x, y) & u_{y}(x, y) \\ v_{x}(x, y) & v_{y}(x, y)\end{array}\right]$

Geometric Definition of conformal

The map f is conformal if, at each (x, y), the matrix $\operatorname{Df}(x, y)$ is non-singular and angle-preserving. Equivalently,

$$
D f(x, y)=\left[\begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array}\right]=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

where r and θ depend on (x, y), and $r \neq 0$.

Lemma

$f(x, y)=(u(x, y), v(x, y))$ is conformal if and only if the C-R equations, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ hold, and $D f \neq 0$.

Proof. If $\left[\begin{array}{cc}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right]=\left[\begin{array}{cc}r \cos \theta & -r \sin \theta \\ r \sin \theta & r \cos \theta\end{array}\right]$ then C-R eqn's hold.
Conversely, C-R eqn's say $\left[\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right]$ takes the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
The point (a, b) lies on the circle of radius $r=\sqrt{a^{2}+b^{2}}$, so we can write $a=r \cos \theta, b=r \sin \theta$, for some θ.

Corollary

An analytic function $f(z)$ is conformal at points where $f^{\prime}(z) \neq 0$, where we identify the complex numbers \mathbb{C} with the plane \mathbb{R}^{2}.

Remark. If write $f^{\prime}(z)=r e^{i \theta}$, then get the same r, θ above.

Grid representation of conformal map $z \rightarrow e^{z}$

Grid representation of conformal map $z \rightarrow z^{\frac{1}{2}}$

Conformal equivalence

Definition

We say two open sets U and V in \mathbb{C} are conformally equivalent if there is an analytic map $f: U \rightarrow V$ that is 1-1 and onto.
Such an f is called a conformal equivalence between U and V.

- $f^{-1}(w)$ is then a conformal equivalence between V and U.

Examples.

- $f(z)=e^{z}$ is a conformal equivalence between

$$
U=\{z:-\pi<\operatorname{lm}(z)<\pi\} \quad \text { and } \quad V=\mathbb{C} \backslash(-\infty, 0]
$$

- $f(z)=z^{\frac{1}{2}}$ is a conformal equivalence between
$U=\{z: \operatorname{Im}(z)>0\}$ and $V=\{w: \operatorname{Im}(w)>0$ and $\operatorname{Re}(w)>0\}$

$\left\{z: \operatorname{Re}(z) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right\} \rightarrow \mathbb{C} \backslash(-i \infty,-i] \cup[i, i \infty)$

$w=\tan z$

