Lecture 23: Conformal Equivalences

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Conformal equivalence

Definition

We say two open sets U and V in \mathbb{C} are conformally equivalent if there is an analytic map $f:U\to V$ that is 1-1 and onto. Such an f is called a conformal equivalence between U and V.

• $f^{-1}(w)$ is then a conformal equivalence between V and U.

Examples.

• $f(z) = e^z$ gives conformal equivalences between

$$U = \{z : -\pi < \operatorname{Im}(z) < \pi\}$$
 and $V = \mathbb{C} \setminus (-\infty, 0]$

$$U = \left\{z : -\frac{\pi}{2} < \operatorname{Im}(z) < \frac{\pi}{2}\right\}$$
 and $V = \left\{z : \operatorname{Re}(z) > 0\right\}$

• $f(z) = z^{\frac{1}{2}}$ (principal) is a conformal equivalence between

$$U = \big\{z: \operatorname{Im}(z) > 0\big\}$$
 and $V = \big\{z: \operatorname{Im}(z) > 0 \text{ and } \operatorname{Re}(z) > 0\big\}$

The disc and the right half-plane

$$w = \frac{1+z}{1-z}, \qquad z = \frac{w-1}{w+1}$$

give a conformal equivalence of $z \in \mathbb{C} \setminus \{1\}$ and $w \in \mathbb{C} \setminus \{-1\}$

$$W = \frac{(1+z)(1-\overline{z})}{|1-z|^2} = \frac{1-|z|^2+2i\operatorname{Im}(z)}{|1-z|^2}$$

Re
$$(w) > 0$$
 if $|z| < 1$
Re $(w) = 0$ if $|z| = 1$
Re $(w) < 0$ if $|z| > 1$

Is conformal equivalence of $z \in D_1(0)$ and $\{w : Re(w) > 0\}$

The disc and the upper half-plane

$$w = i \frac{1+z}{1-z}, \qquad z = \frac{w-i}{w+i}$$

gives a conformal equivalence of $z \in \mathbb{C} \setminus \{1\}$ and $w \in \mathbb{C} \setminus \{-i\}$

$$|z| < 1$$
 if $|w - i| < |w + i|$
 $|z| = 1$ if $|w - i| = |w + i|$
 $|z| > 1$ if $|w - i| > |w + i|$

Is a conformal equivalence of $\{w : Im(w) > 0\}$ and $z \in D_1(0)$

Composition of conformal equivalences

$$z=rac{e^w-1}{e^w+1}$$
, $w=\log\left(rac{1+z}{1-z}
ight)$

conf. equiv. of $\left\{w:-\frac{\pi}{2}<\operatorname{Im}(w)<\frac{\pi}{2}\right\}$ and $z\in D_1(0).$

• This takes $w = -\infty$ to z = -1, and $w = +\infty$ to z = 1.

Composition of conformal equivalences

$$z = \frac{w^2 - i}{w^2 + i}, \qquad w = \sqrt{i \frac{1 + z}{1 - z}}$$

conf. equiv. of $\{Re(w) > 0\} \cap \{Im(w) > 0\}$ and $z \in D_1(0)$.

• This takes w = 0 to z = -1, and $w = \infty$ to z = 1.

Classification of conformal equivalences of $\mathbb C$ and $\mathbb C$

Theorem

An entire, 1-1 function on $\mathbb C$ is of the form f(z)=az+b, for some constants $a,b\in\mathbb C$ with $a\neq 0$.

Proof. Write $f(z) = \sum_{k=0}^{\infty} a_k z^k$.

- $f(1/z) = \sum_{k=0}^{\infty} a_k z^{-k}$ is 1-1 on $\mathbb{C} \setminus \{0\}$, and has isolated singularity at 0.
- f(1/z) can't have an essential singularity since it is 1-1, by Theorem 3.4.12 and the Open Mapping Theorem.
- f(z) is thus a polynomial, and must be linear since it is 1-1.