Lecture 23: Conformal Equivalences

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Conformal equivalence

Definition

We say two open sets U and V in \mathbb{C} are conformally equivalent if there is an analytic map $f: U \rightarrow V$ that is 1-1 and onto. Such an f is called a conformal equivalence between U and V.

- $f^{-1}(w)$ is then a conformal equivalence between V and U. Examples.
- $f(z)=e^{z}$ gives conformal equivalences between

$$
\begin{gathered}
U=\{z:-\pi<\operatorname{Im}(z)<\pi\} \quad \text { and } \quad V=\mathbb{C} \backslash(-\infty, 0] \\
U=\left\{z:-\frac{\pi}{2}<\operatorname{Im}(z)<\frac{\pi}{2}\right\} \quad \text { and } \quad V=\{z: \operatorname{Re}(z)>0\}
\end{gathered}
$$

- $f(z)=z^{\frac{1}{2}}$ (principal) is a conformal equivalence between

$$
U=\{z: \operatorname{Im}(z)>0\} \text { and } V=\{z: \operatorname{Im}(z)>0 \text { and } \operatorname{Re}(z)>0\}
$$

The disc and the right half-plane

$$
w=\frac{1+z}{1-z}, \quad z=\frac{w-1}{w+1}
$$

give a conformal equivalence of $z \in \mathbb{C} \backslash\{1\}$ and $w \in \mathbb{C} \backslash\{-1\}$

$$
w=\frac{(1+z)(1-\bar{z})}{|1-z|^{2}}=\frac{1-|z|^{2}+2 i \operatorname{lm}(z)}{|1-z|^{2}}
$$

$\operatorname{Re}(w)>0$ if $|z|<1$
$\operatorname{Re}(w)=0$ if $|z|=1$
$\operatorname{Re}(w)<0$ if $|z|>1$

Is conformal equivalence of $z \in D_{1}(0)$ and $\{w: \operatorname{Re}(w)>0\}$

The disc and the upper half-plane

$$
w=i \frac{1+z}{1-z}, \quad z=\frac{w-i}{w+i}
$$

gives a conformal equivalence of $z \in \mathbb{C} \backslash\{1\}$ and $w \in \mathbb{C} \backslash\{-i\}$

$$
\begin{array}{lll}
|z|<1 & \text { if } & |w-i|<|w+i| \\
|z|=1 & \text { if } & |w-i|=|w+i| \\
|z|>1 & \text { if } & |w-i|>|w+i|
\end{array}
$$

Is a conformal equivalence of $\{w: \operatorname{Im}(w)>0\}$ and $z \in D_{1}(0)$

Composition of conformal equivalences

$$
z=\frac{e^{w}-1}{e^{w}+1}, \quad w=\log \left(\frac{1+z}{1-z}\right)
$$

conf. equiv. of $\left\{w:-\frac{\pi}{2}<\operatorname{Im}(w)<\frac{\pi}{2}\right\}$ and $z \in D_{1}(0)$.

- This takes $w=-\infty$ to $z=-1$, and $w=+\infty$ to $z=1$.

Composition of conformal equivalences

$$
z=\frac{w^{2}-i}{w^{2}+i}, \quad w=\sqrt{i \frac{1+z}{1-z}}
$$

conf. equiv. of $\{\operatorname{Re}(w)>0\} \cap\{\operatorname{Im}(w)>0\}$ and $z \in D_{1}(0)$.

- This takes $w=0$ to $z=-1$, and $w=\infty$ to $z=1$.

w

Z

Classification of conformal equivalences of \mathbb{C} and \mathbb{C}

Theorem

An entire, 1-1 function on \mathbb{C} is of the form $f(z)=a z+b$, for some constants $a, b \in \mathbb{C}$ with $a \neq 0$.

Proof. Write $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$.

- $f(1 / z)=\sum_{k=0}^{\infty} a_{k} z^{-k}$ is 1-1 on $\mathbb{C} \backslash\{0\}$, and has isolated singularity at 0 .
- $f(1 / z)$ can't have an essential singularity since it is $1-1$, by Theorem 3.4.12 and the Open Mapping Theorem.
- $f(z)$ is thus a polynomial, and must be linear since it is 1-1.

