Lecture 24: Linear Fractional Transformations

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Definition

Linear Fractional Transformation (LFT): $f(z) = \frac{az+b}{cz+d}$ where $a, b, c, d \in \mathbb{C}$, and $ad-bc \neq 0$.

- f(z) does not change if multiply (a, b, c, d) by same number.
- If c = 0, then f(z) is linear. If $c \neq 0$, simple pole at z = -d/c.
- We set $f(\infty) = \lim_{z \to \infty} f(z) = a/c$, and $f(\infty) = \infty$ if c = 0. We define $f(-d/c) = \infty$ (so again $f(\infty) = \infty$ if c = 0). Then f(z) is now defined as a map $f : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$.
- Fixed points: for $z \in \mathbb{C}$, $f(z) = z \Leftrightarrow az + b = cz^2 + dz$. If f has 3 or more fixed points (including ∞), then f(z) = z.

Associate to matrix a LFT: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow f(z) = \frac{az+b}{cz+d}$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \quad \Rightarrow \quad f(g(z)) \quad \text{where} \quad g(z) = \frac{a'z + b'}{c'z + d'}$$

In particular:
$$f^{-1}(z) = \frac{dz - b}{-cz + a}$$

Theorem

Given two sets of 3 points $\{z_0, z_1, z_2\}$, $\{w_0, w_1, w_2\} \subset \mathbb{C} \cup \{\infty\}$, there exists a unique LFT such that $f(z_i) = w_i$ for i = 0, 1, 2.

Uniqueness: f, g two such maps, then $f \circ g^{-1}$ has 3 distinct fixed points, so $f(g^{-1}(w)) = w$, hence f(z) = g(z).

Conformal automorphisms of $\mathbb{D} = \{z : |z| < 1\}$

If |b| < 1, consider the map h_b

$$h_b(z) = \frac{z-b}{1-\bar{b}z}$$
 for which $h_b^{-1} = h_{-b}$.

- Pole of h_b is at $z = 1/\bar{b} \in \{z : |z| > 1\}$, so h_b analytic on \mathbb{D} .
- If $z \in \partial \mathbb{D}$, so $z\overline{z} = 1$, then

$$|h_b(z)| = \left| \frac{1}{z} \frac{z-b}{\overline{z}-\overline{b}} \right| = 1$$

- By the Maximum Modulus Theorem, $|h_b(z)| < 1$ if |z| < 1.
- Same holds for h_b^{-1} , so

Fact

 h_b is a 1-1, analytic map of $\mathbb D$ onto $\mathbb D$, $h_b(b)=0$, $h_b(0)=-b$.

Conformal automorphisms of $\mathbb{D} = \{z : |z| < 1\}$

Theorem

Every conformal equivalence from $\,\mathbb{D}\,$ to $\,\mathbb{D}\,$ must be of the form

$$f(z) = e^{i\theta} \frac{z-b}{1-\bar{b}z}$$
 for some $\theta \in [0,2\pi)$, $b \in \mathbb{D}$.

Proof. If $f : \mathbb{D} \to \mathbb{D}$ is 1–1, onto, and f(b) = 0, let $g = f \circ h_{-b}$.

$$g: \mathbb{D} \xrightarrow{1-1, \text{ onto}} \mathbb{D}$$
 and $g(0) = 0 \Rightarrow g(z) = e^{i\theta} z$

for some $\theta \in [0,2\pi)$ by Theorem 3.5.6. Then

$$f(z) = g(h_b(z)) = e^{i\theta}h_b(z).$$