Lecture 24: Linear Fractional Transformations

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Definition

Linear Fractional Transformation (LFT): $\quad f(z)=\frac{a z+b}{c z+d}$ where $a, b, c, d \in \mathbb{C}$, and $a d-b c \neq 0$.

- $f(z)$ does not change if multiply (a, b, c, d) by same number.
- If $c=0$, then $f(z)$ is linear. If $c \neq 0$, simple pole at $z=-d / c$.
- We set $f(\infty)=\lim _{z \rightarrow \infty} f(z)=a / c$, and $f(\infty)=\infty$ if $c=0$.

We define $f(-d / c)=\infty$ (so again $f(\infty)=\infty$ if $c=0$).
Then $f(z)$ is now defined as a map $f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$.

- Fixed points: for $z \in \mathbb{C}, f(z)=z \Leftrightarrow a z+b=c z^{2}+d z$. If f has 3 or more fixed points (including ∞), then $f(z)=z$.

Associate to matrix a LFT: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Rightarrow f(z)=\frac{a z+b}{c z+d}$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right] \Rightarrow f(g(z)) \text { where } g(z)=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}
$$

In particular: $\quad f^{-1}(z)=\frac{d z-b}{-c z+a}$

Theorem

Given two sets of 3 points $\left\{z_{0}, z_{1}, z_{2}\right\},\left\{w_{0}, w_{1}, w_{2}\right\} \subset \mathbb{C} \cup\{\infty\}$, there exists a unique LFT such that $f\left(z_{j}\right)=w_{j}$ for $j=0,1,2$.

Uniqueness: f, g two such maps, then $f \circ g^{-1}$ has 3 distinct fixed points, so $f\left(g^{-1}(w)\right)=w$, hence $f(z)=g(z)$.

Conformal automorphisms of $\mathbb{D}=\{z:|z|<1\}$

If $|b|<1$, consider the map h_{b}

$$
h_{b}(z)=\frac{z-b}{1-\bar{b} z} \quad \text { for which } \quad h_{b}^{-1}=h_{-b}
$$

- Pole of h_{b} is at $z=1 / \bar{b} \in\{z:|z|>1\}$, so h_{b} analytic on \mathbb{D}.
- If $z \in \partial \mathbb{D}$, so $z \bar{z}=1$, then

$$
\left|h_{b}(z)\right|=\left|\frac{1}{z} \frac{z-b}{\bar{z}-\bar{b}}\right|=1
$$

- By the Maximum Modulus Theorem, $\left|h_{b}(z)\right|<1$ if $|z|<1$.
- Same holds for h_{b}^{-1}, so

Fact

h_{b} is a $1-1$, analytic map of \mathbb{D} onto $\mathbb{D}, h_{b}(b)=0, h_{b}(0)=-b$.

Conformal automorphisms of $\mathbb{D}=\{z:|z|<1\}$

Theorem

Every conformal equivalence from \mathbb{D} to \mathbb{D} must be of the form

$$
f(z)=e^{i \theta} \frac{z-b}{1-\bar{b} z} \text { for some } \theta \in[0,2 \pi), b \in \mathbb{D}
$$

Proof. If $f: \mathbb{D} \rightarrow \mathbb{D}$ is $1-1$, onto, and $f(b)=0$, let $g=f \circ h_{-b}$.

$$
g: \mathbb{D} \xrightarrow{1-1, \text { onto }} \mathbb{D} \text { and } g(0)=0 \Rightarrow g(z)=e^{i \theta} z
$$

for some $\theta \in[0,2 \pi)$ by Theorem 3.5.6. Then

$$
f(z)=g\left(h_{b}(z)\right)=e^{i \theta} h_{b}(z)
$$

