Lecture 26: Conformal automorphisms of \mathbb{D} (and \mathbb{H})

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Previously:

- Every 1-1 conformal map of $\mathbb{C} \to \mathbb{C}$ is of the form

$$f(z) = az + b$$
, $a, b \in \mathbb{C}$.

With the proper interpretation of conformal:

- Every 1-1 conformal map of $\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ has form

$$f(z) = rac{az+b}{cz+d}$$
, $a, b, c, d \in \mathbb{C}$.

Note: the maps from $\mathbb{C} \to \mathbb{C}$ are those for which $f(\infty) = \infty$.

Conformal automorphisms of $\mathbb{D} = \{z : |z| < 1\}$

If |b| < 1, consider the map h_b

$$h_b(z) = \frac{z-b}{1-\bar{b}z}$$
 for which $h_b^{-1} = h_{-b}$.

• Pole of h_b is at $z = 1/\overline{b} \in \{z : |z| > 1\}$, so h_b analytic on \mathbb{D} .

• If
$$z \in \partial \mathbb{D}$$
, so $z\overline{z} = 1$, then

$$|h_b(z)| = \left|\frac{1}{z}\frac{z-b}{\overline{z}-\overline{b}}\right| = 1$$

- By the Maximum Modulus Theorem, $|h_b(z)| < 1$ if |z| < 1.
- Same holds for h_b^{-1} , so

Fact

 h_b is a 1-1, analytic map of \mathbb{D} onto \mathbb{D} , $h_b(b) = 0$, $h_b(0) = -b$.

Conformal automorphisms of $\mathbb{D} = \{z : |z| < 1\}$

Theorem

Every conformal equivalence from ${\mathbb D}$ to ${\mathbb D}$ must be of the form

$$f(z) = e^{i heta} \, rac{z-b}{1-ar b z} \quad ext{for some} \ \ heta \in [0,2\pi) \,, \ b \in \mathbb{D}.$$

Proof. If $f : \mathbb{D} \to \mathbb{D}$ is 1–1, onto, and f(b) = 0, let $g = f \circ h_{-b}$.

$$g(0):\mathbb{D} \xrightarrow{1-1, ext{ onto }} \mathbb{D} ext{ and } g(0)=0 ext{ } \Rightarrow ext{ } g(z)=e^{i heta} z$$

for some $\theta \in [0, 2\pi)$ by Theorem 3.5.6. Then

$$f(z) = g(h_b(z)) = e^{i\theta}h_b(z).$$

Conformal automorphisms of $\mathbb{H} = \{z : Im(z) > 0\}$

Theorem

The conformal equivalences from $\,\mathbb H\,$ to $\,\mathbb H\,$ are of the form

$$f(z) = \frac{az+b}{cz+d}$$
, $a, b, c, d \in \mathbb{R}$, $ad-bc > 0$.

Proof Suppose $f : \mathbb{H} \xrightarrow{1-1, \text{ onto}} \mathbb{H}$. We will show f is a linear fractional transformation. Necessarily $f : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$, so it must have real values for a, b, c, d.

To see *f* must be an LFT, recall $g(z) = \frac{z-i}{z+i}$: $\mathbb{H} \xrightarrow{1-1, \text{ onto}} \mathbb{D}$.

$$g \circ f \circ g^{-1} : \mathbb{D} \xrightarrow{1-1, \text{ onto}} \mathbb{D} \ \Rightarrow \ f = g^{-1} \circ \left(e^{i\theta} h_b \right) \circ g$$

Finally: $Im(f(z)) = \frac{(ad - bc) Im(z)}{|cz + d|^2}$, so ad - bc > 0.