Math 428, Winter 2020, Homework 1 Solutions

Section 3.5: 7

Solution. There are two ways to do this. First, since $f(0)=f^{\prime}(0)=0$, we can write $f(z)=z^{2} g(z)$ for $g(z)$ analytic on $D_{1}(0)$.
By the Schwartz Lemma applied to f, we have $|f(z)| \leq|z|$. This tells us $|z g(z)| \leq 1$. Since $z g(z)$ vanishes at $z=0$, we can apply the Schwartz Lemma to $z g(z)$, and deduce $|z g(z)| \leq|z|$, so $|g(z)| \leq 1$ for all $z \in D_{1}(0)$. Then $|f(z)|=|z|^{2}|g(z)| \leq|z|^{2}$.
Alternatively, repeat the proof of the Schwartz Lemma to show $|g(z)| \leq$ 1 from the maximum principle. That is, note that $|f(z)| \leq 1$ implies $|z|^{2}|g(z)| \leq 1$, so $|g(z)| \leq|z|^{-2}$. Taking any $r<1$, then $|g(z)| \leq r^{-2}$ if $|z|=r$, hence by the maximum principle $|g(z)| \leq r^{-2}$, provided $|z| \leq r<1$. Given a point $z \in D_{1}(0)$, you can take the limit as $r \rightarrow 1$ to deduce $|g(z)| \leq 1$.

Section 3.5: 11
Solution. To solve $\frac{2 z-1}{z-2}=w$, write

$$
\frac{2 z-1}{z-2}=\frac{2(z-2)+3}{z-2}=2+\frac{3}{z-2}=w
$$

Then

$$
z=2+\frac{3}{w-2}=\frac{2 w-1}{w-2}
$$

That is, $f(f(z))=z$. So if we show that f maps $D_{1}(0)$ to $D_{1}(0)$, it follows that f is 1-1 (since if $f\left(z_{1}\right)=f\left(z_{2}\right)$ then $f\left(f\left(z_{1}\right)\right)=f\left(f\left(z_{2}\right)\right)$ so $z_{1}=z_{2}$. It is also onto, since for $|w|<1, z=f(w)$ satisfies $|z|<1$ and $f(z)=w$.
As noted in the hint, consider $|z|=1$ and write $1=z \bar{z}$ to factor

$$
\left|\frac{2 z-1}{z-2}\right|=\left|\frac{1}{z}\right|\left|\frac{2 z-1}{1-2 \bar{z}}\right|=\frac{|2 z-1|}{|2 \bar{z}-1|}=1
$$

f is not constant so by the maximum principle $|f(z)|<1$ if $|z|<1$.
Finally, to show $f(0)=\frac{1}{2}$ just plug in $z=0$.

Section 4.1: 2

Solution. You could draw a picture, or note that the collection of left endpoints equals the collection of right endpoints. (In defining left versus right, they flip for $-\gamma_{j}$, and count twice for $2 \gamma_{7}$.) That is,

$$
\{-1,1,0,0,-1+i, 1+i, i, i\}=\{-1+i, 1+i,-1,1, i, i, 0,0\}
$$

Section 4.1: 3
Solution. One example is the single closed path gotten by joining (in order)

$$
\left(\gamma_{1}, \gamma_{5},-\gamma_{7}, \gamma_{4}, \gamma_{2},-\gamma_{6},-\gamma_{7},-\gamma_{3}\right)
$$

Another is to write Γ as the union of the two closed paths

$$
\left(\gamma_{1}, \gamma_{5},-\gamma_{7},-\gamma_{3}\right)+\left(\gamma_{4}, \gamma_{2},-\gamma_{6},-\gamma_{7}\right)
$$

Section 4.1: 13
Solution. The cycle $\partial D_{3.5}(0)-\partial D_{1.5}(0)$ works.

Additional Problems: 1

Solution. Picture is 3 circles of appropriate radius/center; outermost circle counterclockwise, inner 2 circles clockwise.

$$
\operatorname{ind}_{\Gamma}(z)= \begin{cases}1, & z \in D_{3}(0) \backslash\left(\bar{D}_{\frac{1}{2}}(-1) \cup \bar{D}_{\frac{1}{2}}(1)\right) \\ 0, & z \in D_{\frac{1}{2}}(-1) \cup D_{\frac{1}{2}}(1) \cup\left(\mathbb{C} \backslash \bar{D}_{3}(0)\right)\end{cases}
$$

In particular, $\operatorname{ind}_{\Gamma}(z)=0$ at $z= \pm 1$.

Additional Problems: 2

Solution. The contour Γ of problem 2 satisfies $\operatorname{ind}_{\Gamma}(z)=0$ for all $z \notin E$ (since $z \notin E$ implies $z= \pm 1$). So by the Cauchy Theorem

$$
0=\int_{\Gamma} f(z)=\int_{\partial D_{3}(0)} f(w) d w-\int_{\partial D_{\frac{1}{2}}(-1)} f(w) d w-\int_{\partial D_{\frac{1}{2}}(1)} f(w) d w
$$

whence the result follows.

