Math 428, Winter 2020, Homework 1 Solutions

Section 3.5: 7

Solution. There are two ways to do this. First, since f(0) = f'(0) = 0, we can write $f(z) = z^2 g(z)$ for g(z) analytic on $D_1(0)$.

By the Schwartz Lemma applied to f, we have $|f(z)| \leq |z|$. This tells us $|zg(z)| \leq 1$. Since zg(z) vanishes at z = 0, we can apply the Schwartz Lemma to zg(z), and deduce $|zg(z)| \leq |z|$, so $|g(z)| \leq 1$ for all $z \in D_1(0)$. Then $|f(z)| = |z|^2 |g(z)| \leq |z|^2$.

Alternatively, repeat the proof of the Schwartz Lemma to show $|g(z)| \le 1$ from the maximum principle. That is, note that $|f(z)| \le 1$ implies $|z|^2|g(z)| \le 1$, so $|g(z)| \le |z|^{-2}$. Taking any r < 1, then $|g(z)| \le r^{-2}$ if |z| = r, hence by the maximum principle $|g(z)| \le r^{-2}$, provided $|z| \le r < 1$. Given a point $z \in D_1(0)$, you can take the limit as $r \to 1$ to deduce $|g(z)| \le 1$.

Section 3.5: 11

Solution. To solve $\frac{2z-1}{z-2} = w$, write

$$\frac{2z-1}{z-2} = \frac{2(z-2)+3}{z-2} = 2 + \frac{3}{z-2} = w$$

Then

$$z = 2 + \frac{3}{w - 2} = \frac{2w - 1}{w - 2}$$

That is, f(f(z)) = z. So if we show that f maps $D_1(0)$ to $D_1(0)$, it follows that f is 1-1 (since if $f(z_1) = f(z_2)$ then $f(f(z_1)) = f(f(z_2))$ so $z_1 = z_2$. It is also onto, since for |w| < 1, z = f(w) satisfies |z| < 1 and f(z) = w.

As noted in the hint, consider |z| = 1 and write $1 = z\overline{z}$ to factor

$$\left|\frac{2z-1}{z-2}\right| = \left|\frac{1}{z}\right| \left|\frac{2z-1}{1-2\overline{z}}\right| = \frac{|2z-1|}{|2\overline{z}-1|} = 1$$

f is not constant so by the maximum principle |f(z)| < 1 if |z| < 1. Finally, to show $f(0) = \frac{1}{2}$ just plug in z = 0.

Section 4.1: 2

Solution. You could draw a picture, or note that the collection of left endpoints equals the collection of right endpoints. (In defining left versus right, they flip for $-\gamma_i$, and count twice for $2\gamma_7$.) That is,

$$\{-1, 1, 0, 0, -1 + i, 1 + i, i, i\} = \{-1 + i, 1 + i, -1, 1, i, i, 0, 0\}$$

Section 4.1: 3

Solution. One example is the single closed path gotten by joining (in order)

$$(\gamma_1, \gamma_5, -\gamma_7, \gamma_4, \gamma_2, -\gamma_6, -\gamma_7, -\gamma_3)$$

Another is to write Γ as the union of the two closed paths

$$(\gamma_1, \gamma_5, -\gamma_7, -\gamma_3) + (\gamma_4, \gamma_2, -\gamma_6, -\gamma_7)$$

Section 4.1: 13

Solution. The cycle $\partial D_{3.5}(0) - \partial D_{1.5}(0)$ works.

Additional Problems: 1

Solution. Picture is 3 circles of appropriate radius/center; outermost circle counterclockwise, inner 2 circles clockwise.

$$\operatorname{ind}_{\Gamma}(z) = \begin{cases} 1, & z \in D_3(0) \setminus \left(\overline{D}_{\frac{1}{2}}(-1) \cup \overline{D}_{\frac{1}{2}}(1)\right) \\ 0, & z \in D_{\frac{1}{2}}(-1) \cup D_{\frac{1}{2}}(1) \cup \left(\mathbb{C} \setminus \overline{D}_3(0)\right) \end{cases}$$

In particular, $\operatorname{ind}_{\Gamma}(z) = 0$ at $z = \pm 1$.

Additional Problems: 2

Solution. The contour Γ of problem 2 satisfies $\operatorname{ind}_{\Gamma}(z) = 0$ for all $z \notin E$ (since $z \notin E$ implies $z = \pm 1$). So by the Cauchy Theorem

$$0 = \int_{\Gamma} f(z) = \int_{\partial D_3(0)} f(w) dw - \int_{\partial D_{\frac{1}{2}}(-1)} f(w) dw - \int_{\partial D_{\frac{1}{2}}(1)} f(w) dw$$

whence the result follows.