Math 428, Winter 2020, Homework 3 Solutions

Section 4.4: 1
Solution. $f(z)=\frac{1}{2\left(z-\frac{1}{2}\right)(z-2)}$. Simple poles at $z=\frac{1}{2}, z=2$.
$\operatorname{Res}(f, 2)=\lim _{z \rightarrow 2} \frac{z-2}{2\left(z-\frac{1}{2}\right)(z-2)}=\frac{1}{3}, \quad \operatorname{Res}\left(f, \frac{1}{2}\right)=\lim _{z \rightarrow \frac{1}{2}} \frac{z-\frac{1}{2}}{2\left(z-\frac{1}{2}\right)(z-2)}=-\frac{1}{3}$.

Section 4.4: 3
Solution. $f(z)=\frac{e^{z}}{z^{2}-1}=\frac{e^{z}}{(z-1)(z+1)}, \quad \operatorname{Res}(f, 1)=\frac{e}{2}, \quad \operatorname{Res}(f,-1)=$ $-\frac{e^{-1}}{2}$,

$$
\int_{|z|=2} \frac{e^{z}}{z^{2}-1} d z=2 \pi i\left(\frac{e}{2}-\frac{e^{-1}}{2}\right)
$$

Section 4.4: 8
Solution. Contour $|z-5|=4$ encloses (simple) poles of $f(z)=\frac{\log z}{\sin z}$ at $z=\pi$ and $z=2 \pi$.

$$
\begin{gathered}
\operatorname{Res}(f, \pi)=\lim _{z \rightarrow \pi} \frac{(z-\pi) \log z}{\sin z}=\frac{\log \pi}{\cos \pi}=-\log \pi . \\
\operatorname{Res}(f, 2 \pi)=\lim _{z \rightarrow 2 \pi} \frac{(z-2 \pi) \log z}{\sin z}=\frac{\log (2 \pi)}{\cos (2 \pi)}=\log (2 \pi) . \\
\int_{|z-5|=4} \frac{\log z}{\sin z} d z=2 \pi i(\log (2 \pi)-\log \pi)=2 \pi i \log 2 .
\end{gathered}
$$

Section 4.5: 1
Solution. On the set $|z|=1$, we have $\left|3 z^{7}\right|=3$, and $\left|-z^{3}+1\right| \leq$ $\left|z^{3}\right|+1 \leq 2$. So we apply Rouché's Theorem with $g(z)=3 z^{7}$, and $f(z)=3 z^{7}-z^{3}+1$ to see that $f(z)$ has 7 zeroes inside the unit disc, since $g(z)$ does.

Section 4.5: 2
Solution. On the set $|z|=1$, we have $\left|-4 z^{3}\right|=4$, and $\left|z^{5}+z-1\right| \leq$ $\left|z^{5}\right|+|z|+1 \leq 3$. So we apply Rouché's Theorem with $g(z)=-4 z^{3}$, and $f(z)=z^{5}-4 z^{3}+z-1$ to see that $f(z)$ has 3 zeroes inside the unit disc, since $g(z)$ does.

Section 4.5: 4

Solution. We are given $h(z)$ is nonzero on the boundary of the disc, which means that the quantity $c=\min _{|z|=1}|h(z)|$ satisfies $c>0$. Let $M=\max _{|z|=1}|g(z)|$. then, if $M|\lambda|<c$ we have $|\lambda g(z)| \leq|h(z)|$ for all $z \in \partial D_{1}(0)$. By Rouche's theorem it follows that h and $h+\lambda g$ have the same number of zeroes inside $|z|<1$. Now note that the condition $M|\lambda|<c$ is equivalent to $|\lambda|<\delta$, where $\delta=c / M$.

Additional problem 1.

Solution. For this, we use the following fact from the proof of Rouché's Theorem:

$$
\#\{\text { zeroes of } f \text { inside } \gamma\}-\#\{\text { zeroes of } g \text { inside } \gamma\}=\operatorname{ind}_{h \circ \gamma}(0)
$$

where $h(z)=\frac{f(z)}{g(z)}$. The condition $\operatorname{Re}\left(\frac{f(z)}{g(z)}\right)>0$ for $z \in\{\gamma\}$ says that the path $h \circ \gamma$ is contained in the half-space $\operatorname{Re}(z)>0$, which is a convex set that does not contain the point 0 . Thus $\operatorname{ind}_{h o \gamma}(0)=0$.

Additional problem 2.

Solution. $f(z)=\frac{1}{1+z^{2}}=\frac{1}{(z-i)(z+i)}=\frac{-\frac{1}{2} i}{z-i}+\frac{\frac{1}{2} i}{z+i}$ has poles at $z= \pm i$, and $\operatorname{Res}(f, i)=-\frac{1}{2} i, \operatorname{Res}(f,-i)=\frac{1}{2} i$.
Suppose that γ_{0} and γ_{1} are two paths in $\mathbb{C} \backslash[-i, i]$ that both start at z_{0} and end at z_{1}. Consider the closed path $\gamma=\gamma_{1}-\gamma_{0}$. Since $\{\gamma\} \subset \mathbb{C} \backslash[-i, i]$ then f has no poles on $\{\gamma\}$, so

$$
\begin{aligned}
\int_{\gamma} \frac{1}{1+z^{2}} d z & =2 \pi i\left(-\frac{i}{2} \operatorname{ind}_{\gamma}(i)+\frac{i}{2} \operatorname{ind}_{\gamma}(-i)\right) \\
& =\pi\left(\operatorname{ind}_{\gamma}(i)-\operatorname{ind}_{\gamma}(-i)\right)
\end{aligned}
$$

Since $[-i, i] \subset \mathbb{C} \backslash\{\gamma\}$, it follows that we can connect $-i$ to i by a path that does not intersect γ. Hence $\operatorname{ind}_{\gamma}(i)=\operatorname{ind}_{\gamma}(-i)$. We conclude that $\int_{\gamma} f(z) d z=0$ for all closed paths γ contained in $\mathbb{C} \backslash[-i, i]$. Thus,

$$
\int_{\gamma_{1}-\gamma_{0}} \frac{1}{1+z^{2}} d z=\int_{\gamma_{1}} \frac{1}{1+z^{2}} d z-\int_{\gamma_{0}} \frac{1}{1+z^{2}} d z=0 .
$$

