
Math 428, Winter 2020, Homework 3 Solutions

Section 4.4: 1

Solution. f(z) =
1

2(z − 1
2
)(z − 2)

. Simple poles at z = 1
2
, z = 2.

Res(f, 2) = lim
z→2

z − 2

2(z − 1
2
)(z − 2)

=
1

3
, Res(f, 1

2
) = lim

z→ 1
2

z − 1
2

2(z − 1
2
)(z − 2)

= −1

3
.

Section 4.4: 3

Solution. f(z) =
ez

z2 − 1
=

ez

(z − 1)(z + 1)
, Res(f, 1) =

e

2
, Res(f,−1) =

−e
−1

2
, ∫

|z|=2

ez

z2 − 1
dz = 2πi

(e
2
− e−1

2

)
Section 4.4: 8

Solution. Contour |z−5| = 4 encloses (simple) poles of f(z) =
log z

sin z
at z = π and z = 2π.

Res(f, π) = lim
z→π

(z − π) log z

sin z
=

log π

cos π
= − log π .

Res(f, 2π) = lim
z→2π

(z − 2π) log z

sin z
=

log(2π)

cos(2π)
= log(2π) .

∫
|z−5|=4

log z

sin z
dz = 2πi

(
log(2π)− log π

)
= 2πi log 2.

Section 4.5: 1

Solution. On the set |z| = 1, we have |3z7| = 3, and | − z3 + 1| ≤
|z3| + 1 ≤ 2. So we apply Rouché’s Theorem with g(z) = 3 z7, and
f(z) = 3z7 − z3 + 1 to see that f(z) has 7 zeroes inside the unit disc,
since g(z) does.



Section 4.5: 2

Solution. On the set |z| = 1, we have | − 4z3| = 4, and |z5 + z − 1| ≤
|z5| + |z| + 1 ≤ 3. So we apply Rouché’s Theorem with g(z) = −4z3,
and f(z) = z5 − 4z3 + z − 1 to see that f(z) has 3 zeroes inside the
unit disc, since g(z) does.

Section 4.5: 4

Solution. We are given h(z) is nonzero on the boundary of the disc,
which means that the quantity c = min|z|=1 |h(z)| satisfies c > 0. Let
M = max|z|=1 |g(z)|. then, if M |λ| < c we have |λg(z)| ≤ |h(z)| for all
z ∈ ∂D1(0). By Rouche’s theorem it follows that h and h + λg have
the same number of zeroes inside |z| < 1. Now note that the condition
M |λ| < c is equivalent to |λ| < δ, where δ = c/M .

Additional problem 1.

Solution. For this, we use the following fact from the proof of Rouché’s
Theorem:

#
{

zeroes of f inside γ
}
− #

{
zeroes of g inside γ

}
= indh◦γ(0)

where h(z) =
f(z)

g(z)
. The condition Re

(f(z)

g(z)

)
> 0 for z ∈ {γ} says

that the path h ◦ γ is contained in the half-space Re(z) > 0, which is
a convex set that does not contain the point 0. Thus indh◦γ(0) = 0.

Additional problem 2.

Solution. f(z) =
1

1 + z2
=

1

(z − i)(z + i)
=
−1

2
i

z − i
+

1
2
i

z + i
has poles

at z = ±i, and Res(f, i) = −1
2
i , Res(f,−i) = 1

2
i .

Suppose that γ0 and γ1 are two paths in C \ [−i, i] that both start
at z0 and end at z1. Consider the closed path γ = γ1 − γ0. Since

{γ} ⊂ C \ [−i, i] then f has no poles on {γ}, so∫
γ

1

1 + z2
dz = 2πi

(
− i

2
indγ(i) +

i

2
indγ(−i)

)
= π

(
indγ(i)− indγ(−i)

)
Since [−i, i] ⊂ C \ {γ}, it follows that we can connect −i to i by a path
that does not intersect γ. Hence indγ(i) = indγ(−i). We conclude that∫
γ
f(z) dz = 0 for all closed paths γ contained in C \ [−i, i]. Thus,∫

γ1−γ0

1

1 + z2
dz =

∫
γ1

1

1 + z2
dz −

∫
γ0

1

1 + z2
dz = 0.


