Math 428 Midterm Solutions, Winter 2019

1. Find all poles of the following functions, find their order, and find the residue of f at each of the poles.
(a.) $f(z)=\frac{z}{e^{z}-1}$. Solution. Isolated singularities at zeroes of $e^{z}-1$, so at $z=2 \pi i k$, which are all simple zeroes. $k=0$ is removable, all other k are simple poles. By l'Hopitâl's rule, $\operatorname{Res}(f, 2 \pi i k)=2 \pi i k$.
(b.) $f(z)=\frac{z^{2}}{\left(z^{2}-4\right)^{2}}$. Solution. Isolated singularities at $z= \pm 2$, both give poles of order 2. To find $\operatorname{Res}(f, 2)$, write $f(z)=g(z) /(z-2)^{2}$, where $g(z)=z^{2} /(z+2)^{2}$. Then $\operatorname{Res}(f, 2)=g^{\prime}(2)=1 / 8$. Similarly, $\operatorname{Res}(f,-2)=g^{\prime}(-2)=-1 / 8$.
2. Find the Laurent expansion of $\frac{\sin z-z}{z^{6}}$ about $z=0$, and use it to find $\operatorname{Res}\left(\frac{\sin z-z}{z^{6}}, 0\right)$.

Solution. $\sin z-z=\sum_{k=1}^{\infty}(-1)^{k} z^{2 k+1} /(2 k+1)$!, so the Laurent expansion at 0 is

$$
\frac{\sin z-z}{z^{6}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k-5}
$$

The z^{-1} term comes from $k=2$, so $\operatorname{Res}(f, 0)=1 / 5!=1 / 120$.
3. Calculate the following contour integrals. In part (b.) $\log z$ is the principal branch.
(a.) $\int_{|z-i|=1} \frac{e^{z}}{z^{2}+1} d z$. Solution. Simple pole at i is only pole inside the curve.
$\operatorname{Res}\left(e^{z} /\left(z^{2}+1\right), i\right)=e^{i} / 2 i$, so integral equals $\pi e^{i}=\pi(\cos (1)+i \sin (1))$.
(b.) $\int_{|z-1|=\frac{1}{2}} \frac{e^{z}}{\log z} d z$. Solution. Simple pole at 1 is the only pole in the domain. And by l'Hopitâl's rule, $\operatorname{Res}\left(e^{z} / \log z, 1\right)=e$, so integral equals $2 \pi i e$.
4. (a.) Find the maximum modulus of $f(z)=e^{z}$ on the set $|z| \leq 2$. Solution. $\left|e^{z}\right|=$ $e^{\operatorname{Re}(z)}$, which is increasing in $\operatorname{Re}(z)$, so we need to find the point in $\{|z| \leq 2\}$ (which in fact must be on the boundary) having the largest value of $\operatorname{Re}(z)$. This is $z=2$. Then $\left|e^{z}\right|=e^{2}$ there.
(b.) Show that if c is a complex number with $|c|<3$ then $z^{5}-c e^{z}$ has fives zeroes in $|z|<2$. Solution. If $|z|=2$, then $\left|c e^{z}\right|=|c| e^{\operatorname{Re}(z)} \leq 3 \cdot e^{2} \leq 27$. But $\left|z^{5}\right|=|z|^{5}=32$ when $|z|=2$. So, $\left|\left(z^{5}-c e^{z}\right)-z^{5}\right|<\left|z^{5}\right|$ on $|z|=2$. This implies $z^{5}-c e^{z} \neq 0$ when $|z|=2$. So we can apply Rouché's theorem to see that $z^{5}-c e^{z}$ has the same number of zeroes as z^{5} inside $|z|<2$, which is 5 .

