Axioms for the Real Numbers

Field Axioms: there exist notions of addition and multiplication, and additive and multiplicative identities and inverses, so that:
(P1) (Associative law for addition): $a+(b+c)=(a+b)+c$
(P2) (Existence of additive identity): $\exists 0: a+0=0+a=a$
(P3) (Existence of additive inverse): $a+(-a)=(-a)+a=0$
(P4) (Commutative law for addition): $a+b=b+a$
(P5) (Associative law for multiplication): $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
(P6) (Existence of multiplicative identity): $\exists 1 \neq 0: a \cdot 1=1 \cdot a=a$
(P7) (Existence of multiplicative inverse): $a \cdot a^{-1}=a^{-1} \cdot a=1$ for $a \neq 0$
(P8) (Commutative law for multiplication): $a \cdot b=b \cdot a$
(P9) (Distributive law): $a \cdot(b+c)=a \cdot b+a \cdot c$

Order Axioms: there exists a subset of positive numbers P such that
(P10) (Trichotomy): exclusively either $a \in P$ or $-a \in P$ or $a=0$.
(P11) (Closure under addition): $a, b \in P \Rightarrow a+b \in P$
(P12) (Closure under multiplication): $a, b \in P \Rightarrow a \cdot b \in P$

Completeness Axiom: a least upper bound of a set A is a number x such that $x \geq y$ for all $y \in A$, and such that if z is also an upper bound for A, then necessarily $z \geq x$.
(P13) (Existence of least upper bounds): Every nonempty set A of real numbers which is bounded above has a least upper bound.

We will call properties ($\mathbf{P} 1 \mathbf{)}-\mathbf{(P 1 2)}$, and anything that follows from them, elementary arithmetic. These properties imply, for example, that the real numbers contain the rational numbers as a subfield, and basic properties about the behavior of ' $>$ ' and ' $<$ ' under multiplication and addition.

Adding property (P13) uniquely determines the real numbers. The standard way of proving this is to identify each $x \in \mathbb{R}$ with the subset of rational numbers $y \in \mathbb{Q}$ such that $y \leq x$, referred to as a Dedekind cut. This procedure can also be used to construct the real numbers from the rationals.

