STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

Throughout, we let $[a, b]$ be a bounded interval in $\mathbb{R} . C^{2}([a, b])$ denotes the space of functions with derivatives of second order continuous up to the endpoints. $C_{c}^{2}([a, b])$ is the subspace of functions that vanish near the endpoints.
Let L denote a second order differential operator of the form

$$
\begin{align*}
L u(x) & =r(x) u^{\prime \prime}(x)+r^{\prime}(x) u^{\prime}(x)+q(x) u(x) \\
& =\frac{d}{d x}\left(r(x) \frac{d u}{d x}\right)+q(x) u(x) . \tag{1}
\end{align*}
$$

We assume that $r \in C^{1}([a, b])$ and $q \in C^{0}([a, b])$ are real, and that $r(x) \geq c$ for some $c>0$.
The operator L is the most general second order real ODE which is formally self-adjoint on $L^{2}(d x)$, in that

$$
\int_{a}^{b}(L u) v d x=\int_{a}^{b} u(L v) d x \quad \forall u, v \in C_{c}^{2}([a, b]) .
$$

The condition $u, v \in C_{c}^{2}([a, b])$ implies that when integrating by parts the boundary terms vanish. Since L has real coefficients, conjugating v or not does not affect the definition.
For general $u, v \in C^{2}([a, b])$,

$$
\begin{equation*}
\int_{a}^{b}(L u) v-u(L v) d x=\left.r\left(u^{\prime} v-u v^{\prime}\right)\right|_{a} ^{b} \tag{2}
\end{equation*}
$$

and we need to impose first order conditions on u, v at the endpoints to make the right hand side vanish.
A boundary condition B is an expression of the form

$$
B u=\alpha u(a)+\beta u(b)+\gamma u^{\prime}(a)+\delta u^{\prime}(b)
$$

for real constants $\alpha, \beta, \gamma, \delta$. We will impose two conditions $B_{1} u=0$ and $B_{2} u=0$ where B_{1} and B_{2} are independent (i.e. the corresponding vectors ($\alpha, \beta, \gamma, \delta$) are independent), chosen to guarantee that the right hand side of (2) vanish.

Definition 1. The boundary conditions B_{1}, B_{2} are self-adjoint for L if, for all $u, v \in C^{2}([a, b])$ which satisfy $B_{1} u=B_{2} u=B_{1} v=B_{2} v=0$, then

$$
\int_{a}^{b}(L u) v d x=\int_{a}^{b} u(L v) d x .
$$

In other words, the vanishing of $B_{j} u$ and $B_{j} v$ implies the right-hand side of (2) vanishes.

- Dirichlet conditions: $B_{1} u=u(a), \quad B_{2} u=u(b)$.
- Neumann conditions: $B_{1} u=u^{\prime}(a), \quad B_{2} u=u^{\prime}(b)$.
- Robin conditions: $B_{1} u=u^{\prime}(a)-\alpha u(a), \quad B_{2} u=u^{\prime}(b)+\beta u(b), \alpha, \beta>0$.

The above are separated boundary conditions, in that B_{1} is a condition at a and B_{2} is a condition at b. Any pair of separated conditions is self-adjoint for general L. The most common non-separated condition is

- Periodic conditions: $B_{1} u=u(b)-u(a), \quad B_{2} u=u^{\prime}(b)-u^{\prime}(a)$.

These are self-adjoint for L if $r(b)=r(a)$.

- Another way to state self-adjointness is to consider the subspace

$$
C_{B}^{2}([a, b])=\left\{u \in C^{2}([a, b]): B_{1} u=B_{2} u=0\right\} .
$$

Then $\left(L, B_{1}, B_{2}\right)$ is self-adjoint provided that $\langle L u, v\rangle=\langle u, L v\rangle$ for $u, v \in$ $C_{B}^{2}([a, b])$, where $\langle u, v\rangle=\int_{a}^{b} u \bar{v} d x$.

We next fix a positive weight function $\rho(x) \in C^{2}([a, b])$, so $\rho(x) \geq c>0$ for $x \in[a, b]$, and consider the Sturm-Liouville eigenvalue problem

$$
L u=\lambda \rho u, \quad B_{1} u=B_{2} u=0
$$

We say that the number λ is an eigenvalue if there is a nonzero solution $u \in C^{2}([a, b])$ to this equation, and call u an eigenfunction.
Lemma 2. Let $\left(L, B_{1}, B_{2}, \rho\right)$ be a self-adjoint Sturm-Liouville system.
a. The associated eigenvalues are all real numbers.
b. Eigenfunctions associated to different eigenvalues are orthogonal in the inner product

$$
\langle u, v\rangle_{\rho}=\int_{a}^{b} u(x) \bar{v}(x) \rho(x) d x
$$

c. The dimension of each eigenspace is at most 2; if the boundary conditions are separated then it is exactly 1.

Proof. Note that an eigenfunction u is an eigenvector for the operator $\rho^{-1} L$, i.e. $\rho^{-1} L u=\lambda u$, and that $\left\langle\rho^{-1} L u, v\right\rangle_{\rho}=\left\langle u, \rho^{-1} L v\right\rangle_{\rho}$, so that $\rho^{-1} L$ is selfadjoint on the domain $C_{B}^{2}([a, b])$ with respect to the inner product $\langle\cdot, \cdot\rangle_{\rho}$. The proof of a and b then follow exactly as for finite dimensional operators.
For c, we note that the space of solutions to $(L-\lambda \rho) u=0$ is a 2 -dimensional subspace of $C^{2}([a, b])$. If one imposes a separated condition $B_{1} u=0$, this restricts the initial conditions $\left(u(a), u^{\prime}(a)\right)$ to a 1 -dimensional space, hence there is at most a 1 -dimensional space of solutions to $(L-\lambda \rho) u=0$ with the boundary conditions imposed.
Theorem 3. Given a self-adjoint Sturm-Liouville system as above, there is an orthonormal basis for the space $L_{\rho}^{2}([a, b])$ consisting of eigenfunctions for the Sturm-Liouville problem. The eigenvalues satisfy $\lambda_{n} \rightarrow-\infty$.

Here, $L_{\rho}^{2}([a, b])$ is the space of measurable u on $[a, b]$ such that

$$
\|u\|_{L_{\rho}^{2}}^{2}=\int_{a}^{b}|u(x)|^{2} \rho(x) d x<\infty
$$

Since $\rho(x)$ is bounded above and below, this is the same space of functions as $L^{2}([a, b])$, but the norm and inner product $\langle\cdot, \cdot\rangle_{\rho}$ are different. The map $u \rightarrow \rho^{\frac{1}{2}} u$ is easily seen to be a unitary map of L_{ρ}^{2} onto $L^{2}:\left\|\rho^{\frac{1}{2}} u\right\|_{L^{2}}=\|u\|_{L_{\rho}^{2}}$. In particular, $\left\{u_{j}\right\}_{j=1}^{\infty}$ is an orthonormal basis for L_{ρ}^{2} iff $\left\{\rho^{\frac{1}{2}} u_{j}\right\}_{j=1}^{\infty}$ is an orthonormal basis for L^{2}.

We will prove Theorem 3 in the case of separated boundary conditions for simplicity, but it holds for general self-adjoint boundary conditions. We start the proof by reducing to the case where $\rho=1$. Consider the operator

$$
\tilde{L} u=\rho^{-\frac{1}{2}} L\left(\rho^{-\frac{1}{2}} u\right)=\frac{d}{d x}\left(\frac{r}{\rho} \frac{d u}{d x}\right)+\tilde{q} u, \quad \tilde{q}=\rho^{-\frac{1}{2}} L\left(\rho^{-\frac{1}{2}}\right),
$$

which is formally self-adjoint on $L^{2}(d x)$, and $L u=\lambda \rho u$ iff $\tilde{L}\left(\rho^{\frac{1}{2}} u\right)=\lambda \rho^{\frac{1}{2}} u$. We also define boundary conditions $\tilde{B}_{j}(u)=B_{j}\left(\rho^{-\frac{1}{2}} u\right)$; it follows easily that $\tilde{B}_{1}, \tilde{B}_{2}$ are self-adjoint for \tilde{L}.
We conclude there is orthonormal basis for $L^{2}(\rho d x)$ of eigenfunctions for $\rho^{-1} L$ satisfying B_{j} iff there is an orthonormal basis for $L^{2}(d x)$ consisting of eigenfunctions for \tilde{L} satisfying \tilde{B}_{j}, where the bases are related by multiplying by $\rho^{\frac{1}{2}}$.
We thus assume $\rho=1$, and consider the eigenfunction problem $L u=\lambda u$, where $L u=\left(r u^{\prime}\right)^{\prime}+q u$, and we impose self-adjoint conditions $B_{1} u=B_{2} u=$ 0 .

Lemma 4. If λ is an eigenvalue for $L u=\lambda u$, then $\lambda \leq C$ for some constant C depending on $\left(L, B_{1}, B_{2}\right)$.

Proof. Integrating by parts we have

$$
\lambda \int_{a}^{b}|u|^{2} d x=\int_{a}^{b}(L u) \bar{u} d x=\int_{a}^{b}-r\left|u^{\prime}\right|^{2}+q|u|^{2} d x+\left.r(x) u(x) u^{\prime}(x)\right|_{x=a} ^{x=b} .
$$

For Dirichlet or Neumann conditions, the boundary terms vanish, and

$$
\begin{equation*}
\lambda \int_{a}^{b}|u|^{2} d x \leq \int_{a}^{b} q|u|^{2} d x \leq\left(\max _{[a, b]} q\right) \int_{a}^{b}|u|^{2} d x . \tag{3}
\end{equation*}
$$

For Robin conditions $u^{\prime}(a)=\alpha u(a), u^{\prime}(b)=-\beta u(b)$, we get

$$
\lambda \int_{a}^{b}|u|^{2} d x=\int_{a}^{b}-r|u|^{2}+q|u|^{2} d x-\alpha r(a)|u(a)|^{2}-\beta r(b)|u(b)|^{2} .
$$

In the physically realistic case $\alpha, \beta \geq 0$, then (3) still applies. If one or both is negative, we need more work. We bound

$$
\begin{aligned}
& \max _{[a, b]} u^{2}-\min _{[a, b]} u^{2} \leq \int_{a}^{b}\left|\frac{d}{d x} u^{2}\right| d x=2 \int_{a}^{b}\left|u^{\prime}\right||u| d x \\
& \leq \epsilon \int_{a}^{b}\left|u^{\prime}\right|^{2}+2 \epsilon^{-1} \int_{a}^{b}|u|^{2} d x .
\end{aligned}
$$

Taking ϵ small, for C^{\prime} sufficiently large we have

$$
|\alpha| r(a)|u(a)|^{2}+|\beta| r(b)|u(b)|^{2} \leq \int_{a}^{b} r\left|u^{\prime}\right|^{2}+C^{\prime} \int_{a}^{b}|u|^{2} d x
$$

and then

$$
\lambda \int_{a}^{b}|u|^{2} d x \leq \int_{a}^{b}\left(q+C^{\prime}\right)|u|^{2} d x \leq\left(C^{\prime}+\max _{[a, b]} q\right) \int_{a}^{b}|u|^{2} d x .
$$

We replace L by $L-\lambda_{0}$ with $\lambda_{0}=1+C$, which has the same eigenfunctions, but with eigenvalues shifted by $-\lambda_{0}$. We may thus assume all eigenvalues satisfy $\lambda \leq-1$, and in particular

$$
\begin{equation*}
L u=0, \quad B_{1} u=B_{2} u=0, \quad \text { implies } \quad u=0 . \tag{4}
\end{equation*}
$$

We produce eigenfunctions for L by finding eigenfunctions for the operator L^{-1}, which we express as an integral kernel. Thus, we seek to express the solution to

$$
L u=f, \quad B_{1} u=B_{2} u=0, \quad \text { where } \quad f \in C([a, b]),
$$

in the form

$$
\begin{equation*}
u(x)=\int_{a}^{b} G(x, y) f(y) d y \tag{5}
\end{equation*}
$$

The function $G(x, y)$ is called Green's kernel for the problem $\left(L, B_{1}, B_{2}\right)$. We will apply variation of parameters: let u_{1} and u_{2} be nonzero real solutions to

$$
L u_{1}=L u_{2}=0, \quad B_{1} u_{1}=0, \quad B_{2} u_{2}=0 .
$$

Since B_{1} and B_{2} are separated, then u_{1} and u_{2} are determined up to a constant multiple. Furthermore, u_{1} and u_{2} are linearly independent; otherwise they are both solutions to (4). Thus

$$
W(x)=\operatorname{det}\left[\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right] \neq 0
$$

By Abel's theorem, $r W^{\prime}+r^{\prime} W=0$, so $r W=$ constant. The variation of parameters method states that if

$$
\left[\begin{array}{ll}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right]\left[\begin{array}{l}
c_{1}^{\prime}(x) \\
c_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{c}
0 \\
f / r
\end{array}\right]
$$

then $u=c_{1} u_{1}+c_{2} u_{2}$ solves $L u=f$. This has solution

$$
c_{1}^{\prime}=\frac{-u_{2} f}{r W}, \quad c_{2}^{\prime}=\frac{u_{1} f}{r W} .
$$

Since B_{1} is a first order operator at a, then $B_{1} u=c_{1}(a) B_{1} u_{1}+c_{2}(a) B_{1} u_{2}$, and this vanishes if $c_{2}(a)=0$. Similarly $B_{2} u=0$ if $c_{1}(b)=0$. Thus we set

$$
c_{1}(x)=\int_{x}^{b} \frac{u_{2}(y)}{r W} f(y) d y, \quad c_{2}(x)=\int_{a}^{x} \frac{u_{1}(y)}{r W} f(y) d y .
$$

Then (5) holds, where

$$
G(x, y)= \begin{cases}(r W)^{-1} u_{1}(x) u_{2}(y), & y \geq x \\ (r W)^{-1} u_{2}(x) u_{1}(y), & x \geq y\end{cases}
$$

Note that $G(x, y)=G(y, x)$, and that $G(x, y)$ is continuous on $[a, b] \times[a, b]$. Furthermore, G is real since u_{1} and u_{2} are. The kernel G is also a left inverse for L, in that if $v \in C_{B}^{2}([a, b])$, then

$$
v(x)=\int_{a}^{b} G(x, y)(L v)(y) d y
$$

This follows by uniqueness of solutions (4). In particular, if one considers the maps

$$
L: C_{B}^{2}([a, b]) \rightarrow C([a, b]), \quad G: C([a, b]) \rightarrow C_{B}^{2}([a, b]),
$$

then these maps are respectively the inverse of each other. It follows that G is 1-1 on the space of continuous functions, but we need a stronger result for the diagonalization argument.
Lemma 5. Suppose that $f \in L^{2}([a, b])$, and that $\int_{a}^{b} G(x, y) f(y) d y=0$ for all x. Then $f(y)=0$ a.e.

Proof. We will show that $\int f(y) \phi(y) d y=0$ for all $\phi \in C_{c}^{2}([a, b])$, and the result follows by density of C_{c}^{2} in L^{2}. We then write

$$
\begin{aligned}
\int_{a}^{b} f(y) \phi(y) d y & =\int_{a}^{b} f(y)\left(\int_{a}^{b} G(y, x)(L \phi)(x) d x\right) d y \\
& =\int_{a}^{b}\left(\int_{a}^{b} G(x, y) f(y) d y\right)(L \phi)(x) d x
\end{aligned}
$$

using Fubini's theorem.
The operator $T f(x)=\int_{a}^{b} G(x, y) f(y) d y$ is then a self-adjoint, compact operator on $L^{2}([a, b])$, and 0 is not an eigenvalue of T. There thus exists an orthonormal basis $\left\{u_{j}\right\}_{j=1}^{\infty}$ for $L^{2}([a, b])$, where

$$
\int_{a}^{b} G(x, y) u_{j}(y) d y=\nu_{j} u_{j}(x), \quad \nu_{j} \neq 0
$$

Since the left hand side is continuous in x so is $u_{j}(x)$, and thus the left hand side belongs to $C_{B}^{2}([a, b])$, and so $u_{j} \in C_{B}^{2}([a, b])$. We then have

$$
L u_{j}=\lambda_{j} u_{j}, \quad \lambda_{j}=\nu_{j}^{-1}
$$

and by Lemma 2 each eigenspace is 1 -dimensional (separated boundary conditions). We have arranged that $\lambda_{j} \leq-1$, which means we can order them so that $\lambda_{j} \rightarrow-\infty$ in a decreasing manner. The eigenvalues for the original problem are $\lambda_{j}+\lambda_{0}$, which still decrease to $-\infty$, but there may be finitely many positive eigenvalues, depending on q and the boundary conditions.

