STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

Throughout, we let [a, b] be a bounded interval in \mathbb{R} . $C^2([a, b])$ denotes the space of functions with derivatives of second order continuous up to the endpoints. $C_c^2([a, b])$ is the subspace of functions that vanish near the endpoints.

Let L denote a second order differential operator of the form

(1)
$$Lu(x) = r(x)u''(x) + r'(x)u'(x) + q(x)u(x) = \frac{d}{dx}\left(r(x)\frac{du}{dx}\right) + q(x)u(x).$$

We assume that $r \in C^1([a, b])$ and $q \in C^0([a, b])$ are real, and that $r(x) \ge c$ for some c > 0.

The operator L is the most general second order real ODE which is formally self-adjoint on $L^2(dx)$, in that

$$\int_{a}^{b} (Lu) v \, dx = \int_{a}^{b} u \, (Lv) \, dx \qquad \forall \ u, v \in C_{c}^{2}([a, b]) \, dx$$

The condition $u, v \in C_c^2([a, b])$ implies that when integrating by parts the boundary terms vanish. Since L has real coefficients, conjugating v or not does not affect the definition.

For general $u, v \in C^2([a, b])$,

(2)
$$\int_{a}^{b} (Lu)v - u(Lv) \, dx = r \big(u' \, v - u \, v' \big) \big|_{a}^{b}$$

and we need to impose first order conditions on u, v at the endpoints to make the right hand side vanish.

A boundary condition B is an expression of the form

$$Bu = \alpha u(a) + \beta u(b) + \gamma u'(a) + \delta u'(b)$$

for real constants $\alpha, \beta, \gamma, \delta$. We will impose two conditions $B_1 u = 0$ and $B_2 u = 0$ where B_1 and B_2 are independent (i.e. the corresponding vectors $(\alpha, \beta, \gamma, \delta)$ are independent), chosen to guarantee that the right hand side of (2) vanish.

Definition 1. The boundary conditions B_1 , B_2 are self-adjoint for L if, for all $u, v \in C^2([a, b])$ which satisfy $B_1u = B_2u = B_1v = B_2v = 0$, then

$$\int_{a}^{b} (Lu) v \, dx = \int_{a}^{b} u \, (Lv) \, dx \, .$$

In other words, the vanishing of $B_j u$ and $B_j v$ implies the right-hand side of (2) vanishes.

- Dirichlet conditions: $B_1u = u(a)$, $B_2u = u(b)$.
- Neumann conditions: $B_1u = u'(a)$, $B_2u = u'(b)$.

• Robin conditions: $B_1u = u'(a) - \alpha u(a)$, $B_2u = u'(b) + \beta u(b)$, $\alpha, \beta > 0$.

The above are separated boundary conditions, in that B_1 is a condition at a and B_2 is a condition at b. Any pair of separated conditions is self-adjoint for general L. The most common non-separated condition is

• Periodic conditions: $B_1 u = u(b) - u(a)$, $B_2 u = u'(b) - u'(a)$.

These are self-adjoint for L if r(b) = r(a).

• Another way to state self-adjointness is to consider the subspace

$$C_B^2([a,b]) = \{ u \in C^2([a,b]) : B_1 u = B_2 u = 0 \}.$$

Then (L, B_1, B_2) is self-adjoint provided that $\langle Lu, v \rangle = \langle u, Lv \rangle$ for $u, v \in C_B^2([a, b])$, where $\langle u, v \rangle = \int_a^b u \, \bar{v} \, dx$.

We next fix a positive weight function $\rho(x) \in C^2([a, b])$, so $\rho(x) \ge c > 0$ for $x \in [a, b]$, and consider the Sturm-Liouville eigenvalue problem

 $Lu = \lambda \rho u, \qquad B_1 u = B_2 u = 0.$

We say that the number λ is an eigenvalue if there is a nonzero solution $u \in C^2([a, b])$ to this equation, and call u an eigenfunction.

Lemma 2. Let (L, B_1, B_2, ρ) be a self-adjoint Sturm-Liouville system.

- a. The associated eigenvalues are all real numbers.
- b. Eigenfunctions associated to different eigenvalues are orthogonal in the inner product

$$\langle u, v \rangle_{\rho} = \int_{a}^{b} u(x) \bar{v}(x) \,\rho(x) \,dx \,.$$

c. The dimension of each eigenspace is at most 2; if the boundary conditions are separated then it is exactly 1.

Proof. Note that an eigenfunction u is an eigenvector for the operator $\rho^{-1}L$, i.e. $\rho^{-1}Lu = \lambda u$, and that $\langle \rho^{-1}Lu, v \rangle_{\rho} = \langle u, \rho^{-1}Lv \rangle_{\rho}$, so that $\rho^{-1}L$ is self-adjoint on the domain $C_B^2([a, b])$ with respect to the inner product $\langle \cdot, \cdot \rangle_{\rho}$. The proof of a and b then follow exactly as for finite dimensional operators.

For c, we note that the space of solutions to $(L - \lambda \rho)u = 0$ is a 2-dimensional subspace of $C^2([a, b])$. If one imposes a separated condition $B_1u = 0$, this restricts the initial conditions (u(a), u'(a)) to a 1-dimensional space, hence there is at most a 1-dimensional space of solutions to $(L - \lambda \rho)u = 0$ with the boundary conditions imposed.

Theorem 3. Given a self-adjoint Sturm-Liouville system as above, there is an orthonormal basis for the space $L^2_{\rho}([a,b])$ consisting of eigenfunctions for the Sturm-Liouville problem. The eigenvalues satisfy $\lambda_n \to -\infty$. Here, $L^2_{\rho}([a, b])$ is the space of measurable u on [a, b] such that

$$||u||_{L^2_{\rho}}^2 = \int_a^b |u(x)|^2 \,\rho(x) \, dx < \infty \, .$$

Since $\rho(x)$ is bounded above and below, this is the same space of functions as $L^2([a,b])$, but the norm and inner product $\langle \cdot, \cdot \rangle_{\rho}$ are different. The map $u \to \rho^{\frac{1}{2}}u$ is easily seen to be a unitary map of L^2_{ρ} onto L^2 : $\|\rho^{\frac{1}{2}}u\|_{L^2} = \|u\|_{L^2_{\rho}}$. In particular, $\{u_j\}_{j=1}^{\infty}$ is an orthonormal basis for L^2_{ρ} iff $\{\rho^{\frac{1}{2}}u_j\}_{j=1}^{\infty}$ is an orthonormal basis for L^2 .

We will prove Theorem 3 in the case of separated boundary conditions for simplicity, but it holds for general self-adjoint boundary conditions. We start the proof by reducing to the case where $\rho = 1$. Consider the operator

$$\tilde{L}u = \rho^{-\frac{1}{2}}L(\rho^{-\frac{1}{2}}u) = \frac{d}{dx}\left(\frac{r}{\rho}\frac{du}{dx}\right) + \tilde{q}u, \qquad \tilde{q} = \rho^{-\frac{1}{2}}L(\rho^{-\frac{1}{2}}),$$

which is formally self-adjoint on $L^2(dx)$, and $Lu = \lambda \rho u$ iff $\tilde{L}(\rho^{\frac{1}{2}}u) = \lambda \rho^{\frac{1}{2}}u$. We also define boundary conditions $\tilde{B}_j(u) = B_j(\rho^{-\frac{1}{2}}u)$; it follows easily that \tilde{B}_1, \tilde{B}_2 are self-adjoint for \tilde{L} .

We conclude there is orthonormal basis for $L^2(\rho dx)$ of eigenfunctions for $\rho^{-1}L$ satisfying B_j iff there is an orthonormal basis for $L^2(dx)$ consisting of eigenfunctions for \tilde{L} satisfying \tilde{B}_j , where the bases are related by multiplying by $\rho^{\frac{1}{2}}$.

We thus assume $\rho = 1$, and consider the eigenfunction problem $Lu = \lambda u$, where Lu = (ru')' + qu, and we impose self-adjoint conditions $B_1u = B_2u = 0$.

Lemma 4. If λ is an eigenvalue for $Lu = \lambda u$, then $\lambda \leq C$ for some constant C depending on (L, B_1, B_2) .

Proof. Integrating by parts we have

$$\lambda \int_{a}^{b} |u|^{2} dx = \int_{a}^{b} (Lu)\bar{u} dx = \int_{a}^{b} -r|u'|^{2} + q|u|^{2} dx + r(x)u(x)u'(x)\big|_{x=a}^{x=b}.$$

For Dirichlet or Neumann conditions, the boundary terms vanish, and

(3)
$$\lambda \int_{a}^{b} |u|^{2} dx \leq \int_{a}^{b} q |u|^{2} dx \leq \left(\max_{[a,b]} q\right) \int_{a}^{b} |u|^{2} dx$$

For Robin conditions $u'(a) = \alpha u(a)$, $u'(b) = -\beta u(b)$, we get

$$\lambda \int_{a}^{b} |u|^{2} dx = \int_{a}^{b} -r|u|^{2} + q|u|^{2} dx - \alpha r(a)|u(a)|^{2} - \beta r(b)|u(b)|^{2}.$$

In the physically realistic case $\alpha, \beta \geq 0$, then (3) still applies. If one or both is negative, we need more work. We bound

$$\max_{[a,b]} u^2 - \min_{[a,b]} u^2 \le \int_a^b \left| \frac{d}{dx} u^2 \right| dx = 2 \int_a^b |u'| |u| dx$$
$$\le \epsilon \int_a^b |u'|^2 + 2\epsilon^{-1} \int_a^b |u|^2 dx.$$

Taking ϵ small, for C' sufficiently large we have

$$|\alpha|r(a)|u(a)|^{2} + |\beta|r(b)|u(b)|^{2} \le \int_{a}^{b} r|u'|^{2} + C' \int_{a}^{b} |u|^{2} dx$$

and then

$$\lambda \int_{a}^{b} |u|^{2} dx \leq \int_{a}^{b} (q+C') |u|^{2} dx \leq \left(C' + \max_{[a,b]} q\right) \int_{a}^{b} |u|^{2} dx.$$

We replace L by $L - \lambda_0$ with $\lambda_0 = 1 + C$, which has the same eigenfunctions, but with eigenvalues shifted by $-\lambda_0$. We may thus assume all eigenvalues satisfy $\lambda \leq -1$, and in particular

(4)
$$Lu = 0, \quad B_1u = B_2u = 0, \quad \text{implies} \quad u = 0$$

We produce eigenfunctions for L by finding eigenfunctions for the operator L^{-1} , which we express as an integral kernel. Thus, we seek to express the solution to

$$Lu = f$$
, $B_1u = B_2u = 0$, where $f \in C([a, b])$,

in the form

(5)
$$u(x) = \int_{a}^{b} G(x, y) f(y) dy.$$

The function G(x, y) is called *Green's kernel* for the problem (L, B_1, B_2) . We will apply variation of parameters: let u_1 and u_2 be nonzero real solutions to

$$Lu_1 = Lu_2 = 0$$
, $B_1u_1 = 0$, $B_2u_2 = 0$.

Since B_1 and B_2 are separated, then u_1 and u_2 are determined up to a constant multiple. Furthermore, u_1 and u_2 are linearly independent; otherwise they are both solutions to (4). Thus

$$W(x) = \det \begin{bmatrix} u_1(x) & u_2(x) \\ u_1'(x) & u_2'(x) \end{bmatrix} \neq 0.$$

By Abel's theorem, rW' + r'W = 0, so rW = constant. The variation of parameters method states that if

$$\begin{bmatrix} u_1(x) & u_2(x) \\ u_1'(x) & u_2'(x) \end{bmatrix} \begin{bmatrix} c_1'(x) \\ c_2'(x) \end{bmatrix} = \begin{bmatrix} 0 \\ f/r \end{bmatrix}$$

then $u = c_1 u_1 + c_2 u_2$ solves Lu = f. This has solution

$$c_1' = \frac{-u_2 f}{rW} \,, \qquad c_2' = \frac{u_1 f}{rW}$$

Since B_1 is a first order operator at a, then $B_1u = c_1(a)B_1u_1 + c_2(a)B_1u_2$, and this vanishes if $c_2(a) = 0$. Similarly $B_2u = 0$ if $c_1(b) = 0$. Thus we set

$$c_1(x) = \int_x^b \frac{u_2(y)}{rW} f(y) \, dy \,, \qquad c_2(x) = \int_a^x \frac{u_1(y)}{rW} f(y) \, dy \,.$$

Then (5) holds, where

$$G(x,y) = \begin{cases} (rW)^{-1} u_1(x) u_2(y), & y \ge x, \\ (rW)^{-1} u_2(x) u_1(y), & x \ge y. \end{cases}$$

Note that G(x, y) = G(y, x), and that G(x, y) is continuous on $[a, b] \times [a, b]$. Furthermore, G is real since u_1 and u_2 are. The kernel G is also a left inverse for L, in that if $v \in C_B^2([a, b])$, then

$$v(x) = \int_a^b G(x, y) \left(Lv \right)(y) \, dy \, .$$

This follows by uniqueness of solutions (4). In particular, if one considers the maps

$$L : C_B^2([a,b]) \to C([a,b]), \qquad G : C([a,b]) \to C_B^2([a,b])$$

then these maps are respectively the inverse of each other. It follows that G is 1-1 on the space of continuous functions, but we need a stronger result for the diagonalization argument.

Lemma 5. Suppose that $f \in L^2([a,b])$, and that $\int_a^b G(x,y) f(y) dy = 0$ for all x. Then f(y) = 0 a.e.

Proof. We will show that $\int f(y)\phi(y) dy = 0$ for all $\phi \in C_c^2([a, b])$, and the result follows by density of C_c^2 in L^2 . We then write

$$\int_{a}^{b} f(y) \phi(y) dy = \int_{a}^{b} f(y) \left(\int_{a}^{b} G(y, x) \left(L\phi \right)(x) dx \right) dy$$
$$= \int_{a}^{b} \left(\int_{a}^{b} G(x, y) f(y) dy \right) (L\phi)(x) dx$$

using Fubini's theorem.

The operator $Tf(x) = \int_a^b G(x, y)f(y) dy$ is then a self-adjoint, compact operator on $L^2([a, b])$, and 0 is not an eigenvalue of T. There thus exists an orthonormal basis $\{u_j\}_{j=1}^{\infty}$ for $L^2([a, b])$, where

$$\int_a^b G(x,y) \, u_j(y) \, dy = \nu_j \, u_j(x) \,, \qquad \nu_j \neq 0$$

Since the left hand side is continuous in x so is $u_j(x)$, and thus the left hand side belongs to $C_B^2([a,b])$, and so $u_j \in C_B^2([a,b])$. We then have

$$Lu_j = \lambda_j u_j, \qquad \lambda_j = \nu_j^{-1},$$

and by Lemma 2 each eigenspace is 1-dimensional (separated boundary conditions). We have arranged that $\lambda_j \leq -1$, which means we can order them so that $\lambda_j \to -\infty$ in a decreasing manner. The eigenvalues for the original problem are $\lambda_j + \lambda_0$, which still decrease to $-\infty$, but there may be finitely many positive eigenvalues, depending on q and the boundary conditions.