
STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

Throughout, we let [a, b] be a bounded interval in R. C2([a, b]) denotes
the space of functions with derivatives of second order continuous up to
the endpoints. C2

c ([a, b]) is the subspace of functions that vanish near the
endpoints.

Let L denote a second order differential operator of the form

Lu(x) = r(x)u′′(x) + r′(x)u′(x) + q(x)u(x)

=
d

dx

(
r(x)

du

dx

)
+ q(x)u(x) .

(1)

We assume that r ∈ C1([a, b]) and q ∈ C0([a, b]) are real, and that r(x) ≥ c
for some c > 0.

The operator L is the most general second order real ODE which is formally
self-adjoint on L2(dx), in that∫ b

a
(Lu) v dx =

∫ b

a
u (Lv) dx ∀ u, v ∈ C2

c ([a, b]) .

The condition u, v ∈ C2
c ([a, b]) implies that when integrating by parts the

boundary terms vanish. Since L has real coefficients, conjugating v or not
does not affect the definition.

For general u, v ∈ C2([a, b]),

(2)

∫ b

a
(Lu)v − u(Lv) dx = r

(
u′ v − u v′

)∣∣b
a

and we need to impose first order conditions on u, v at the endpoints to
make the right hand side vanish.

A boundary condition B is an expression of the form

Bu = αu(a) + βu(b) + γu′(a) + δu′(b)

for real constants α, β, γ, δ. We will impose two conditions B1u = 0 and
B2u = 0 where B1 and B2 are independent (i.e. the corresponding vectors
(α, β, γ, δ) are independent), chosen to guarantee that the right hand side
of (2) vanish.

Definition 1. The boundary conditions B1, B2 are self-adjoint for L if, for
all u, v ∈ C2([a, b]) which satisfy B1u = B2u = B1v = B2v = 0, then∫ b

a
(Lu) v dx =

∫ b

a
u (Lv) dx .

In other words, the vanishing of Bju and Bjv implies the right-hand side of
(2) vanishes.
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• Dirichlet conditions: B1u = u(a) , B2u = u(b) .

• Neumann conditions: B1u = u′(a) , B2u = u′(b) .

• Robin conditions: B1u = u′(a)−αu(a) , B2u = u′(b)+βu(b) , α, β > 0.

The above are separated boundary conditions, in that B1 is a condition at a
and B2 is a condition at b. Any pair of separated conditions is self-adjoint
for general L. The most common non-separated condition is

• Periodic conditions: B1u = u(b)− u(a) , B2u = u′(b)− u′(a) .

These are self-adjoint for L if r(b) = r(a).

• Another way to state self-adjointness is to consider the subspace

C2
B([a, b]) =

{
u ∈ C2([a, b]) : B1u = B2u = 0

}
.

Then (L,B1, B2) is self-adjoint provided that
〈
Lu, v

〉
=
〈
u, Lv

〉
for u, v ∈

C2
B([a, b]), where

〈
u, v
〉

=
∫ b
a u v̄ dx .

We next fix a positive weight function ρ(x) ∈ C2([a, b]), so ρ(x) ≥ c > 0 for
x ∈ [a, b], and consider the Sturm-Liouville eigenvalue problem

Lu = λ ρu , B1u = B2u = 0 .

We say that the number λ is an eigenvalue if there is a nonzero solution
u ∈ C2([a, b]) to this equation, and call u an eigenfunction.

Lemma 2. Let (L,B1, B2, ρ) be a self-adjoint Sturm-Liouville system.

a. The associated eigenvalues are all real numbers.
b. Eigenfunctions associated to different eigenvalues are orthogonal in

the inner product〈
u, v
〉
ρ

=

∫ b

a
u(x)v̄(x) ρ(x) dx .

c. The dimension of each eigenspace is at most 2; if the boundary con-
ditions are separated then it is exactly 1.

Proof. Note that an eigenfunction u is an eigenvector for the operator ρ−1L,
i.e. ρ−1Lu = λu, and that

〈
ρ−1Lu, v

〉
ρ

=
〈
u, ρ−1Lv

〉
ρ
, so that ρ−1L is self-

adjoint on the domain C2
B([a, b]) with respect to the inner product

〈
· , ·
〉
ρ
.

The proof of a and b then follow exactly as for finite dimensional operators.

For c, we note that the space of solutions to (L−λρ)u = 0 is a 2-dimensional
subspace of C2([a, b]). If one imposes a separated condition B1u = 0, this
restricts the initial conditions

(
u(a), u′(a)

)
to a 1-dimensional space, hence

there is at most a 1-dimensional space of solutions to (L − λρ)u = 0 with
the boundary conditions imposed. �

Theorem 3. Given a self-adjoint Sturm-Liouville system as above, there is
an orthonormal basis for the space L2

ρ([a, b]) consisting of eigenfunctions for
the Sturm-Liouville problem. The eigenvalues satisfy λn → −∞.
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Here, L2
ρ([a, b]) is the space of measurable u on [a, b] such that

‖u‖2L2
ρ

=

∫ b

a
|u(x)|2 ρ(x) dx <∞ .

Since ρ(x) is bounded above and below, this is the same space of functions
as L2([a, b]), but the norm and inner product

〈
· , ·
〉
ρ

are different. The map

u→ ρ
1
2u is easily seen to be a unitary map of L2

ρ onto L2: ‖ρ
1
2u‖L2 = ‖u‖L2

ρ
.

In particular, {uj}∞j=1 is an orthonormal basis for L2
ρ iff {ρ

1
2uj}∞j=1 is an

orthonormal basis for L2 .

We will prove Theorem 3 in the case of separated boundary conditions for
simplicity, but it holds for general self-adjoint boundary conditions. We
start the proof by reducing to the case where ρ = 1. Consider the operator

L̃u = ρ−
1
2L(ρ−

1
2u) =

d

dx

(
r

ρ

du

dx

)
+ q̃u , q̃ = ρ−

1
2L(ρ−

1
2 ) ,

which is formally self-adjoint on L2(dx), and Lu = λρu iff L̃(ρ
1
2u) = λ ρ

1
2u.

We also define boundary conditions B̃j(u) = Bj(ρ
− 1

2u); it follows easily that

B̃1 , B̃2 are self-adjoint for L̃.

We conclude there is orthonormal basis for L2(ρdx) of eigenfunctions for
ρ−1L satisfying Bj iff there is an orthonormal basis for L2(dx) consisting of

eigenfunctions for L̃ satisfying B̃j , where the bases are related by multiplying

by ρ
1
2 .

We thus assume ρ = 1, and consider the eigenfunction problem Lu = λu,
where Lu = (ru′)′+ qu, and we impose self-adjoint conditions B1u = B2u =
0.

Lemma 4. If λ is an eigenvalue for Lu = λu, then λ ≤ C for some constant
C depending on (L,B1, B2).

Proof. Integrating by parts we have

λ

∫ b

a
|u|2 dx =

∫ b

a
(Lu)ū dx =

∫ b

a
−r|u′|2 + q |u|2 dx+ r(x)u(x)u′(x)

∣∣x=b
x=a

.

For Dirichlet or Neumann conditions, the boundary terms vanish, and

(3) λ

∫ b

a
|u|2 dx ≤

∫ b

a
q |u|2 dx ≤

(
max
[a,b]

q
) ∫ b

a
|u|2 dx .

For Robin conditions u′(a) = αu(a) , u′(b) = −βu(b), we get

λ

∫ b

a
|u|2 dx =

∫ b

a
−r|u|2 + q |u|2 dx− αr(a)|u(a)|2 − βr(b)|u(b)|2 .
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In the physically realistic case α, β ≥ 0, then (3) still applies. If one or both
is negative, we need more work. We bound

max
[a,b]

u2 −min
[a,b]

u2 ≤
∫ b

a

∣∣∣ d
dx
u2
∣∣∣ dx = 2

∫ b

a
|u′| |u| dx

≤ ε
∫ b

a
|u′|2 + 2ε−1

∫ b

a
|u|2 dx .

Taking ε small, for C ′ sufficiently large we have

|α|r(a)|u(a)|2 + |β|r(b)|u(b)|2 ≤
∫ b

a
r|u′|2 + C ′

∫ b

a
|u|2 dx

and then

λ

∫ b

a
|u|2 dx ≤

∫ b

a
(q + C ′) |u|2 dx ≤

(
C ′ + max

[a,b]
q
)∫ b

a
|u|2 dx .

�

We replace L by L−λ0 with λ0 = 1+C, which has the same eigenfunctions,
but with eigenvalues shifted by −λ0. We may thus assume all eigenvalues
satisfy λ ≤ −1, and in particular

(4) Lu = 0 , B1u = B2u = 0 , implies u = 0 .

We produce eigenfunctions for L by finding eigenfunctions for the operator
L−1, which we express as an integral kernel. Thus, we seek to express the
solution to

Lu = f , B1u = B2u = 0 , where f ∈ C([a, b]) ,

in the form

(5) u(x) =

∫ b

a
G(x, y) f(y) dy .

The function G(x, y) is called Green’s kernel for the problem (L,B1, B2). We
will apply variation of parameters: let u1 and u2 be nonzero real solutions
to

Lu1 = Lu2 = 0 , B1u1 = 0 , B2u2 = 0 .

Since B1 and B2 are separated, then u1 and u2 are determined up to a con-
stant multiple. Furthermore, u1 and u2 are linearly independent; otherwise
they are both solutions to (4). Thus

W (x) = det

[
u1(x) u2(x)

u′1(x) u′2(x)

]
6= 0 .

By Abel’s theorem, rW ′ + r′W = 0, so rW = constant. The variation of
parameters method states that if[

u1(x) u2(x)

u′1(x) u′2(x)

][
c′1(x)

c′2(x)

]
=

[
0

f/r

]
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then u = c1u1 + c2u2 solves Lu = f . This has solution

c′1 =
−u2f
rW

, c′2 =
u1f

rW
.

Since B1 is a first order operator at a, then B1u = c1(a)B1u1 + c2(a)B1u2,
and this vanishes if c2(a) = 0. Similarly B2u = 0 if c1(b) = 0. Thus we set

c1(x) =

∫ b

x

u2(y)

rW
f(y) dy , c2(x) =

∫ x

a

u1(y)

rW
f(y) dy .

Then (5) holds, where

G(x, y) =

{
(rW )−1 u1(x)u2(y) , y ≥ x ,

(rW )−1 u2(x)u1(y) , x ≥ y .
Note that G(x, y) = G(y, x), and that G(x, y) is continuous on [a, b]× [a, b].
Furthermore, G is real since u1 and u2 are. The kernel G is also a left inverse
for L, in that if v ∈ C2

B([a, b]), then

v(x) =

∫ b

a
G(x, y) (Lv)(y) dy .

This follows by uniqueness of solutions (4). In particular, if one considers
the maps

L : C2
B([a, b])→ C([a, b]) , G : C([a, b])→ C2

B([a, b]) ,

then these maps are respectively the inverse of each other. It follows that
G is 1-1 on the space of continuous functions, but we need a stronger result
for the diagonalization argument.

Lemma 5. Suppose that f ∈ L2([a, b]), and that
∫ b
a G(x, y) f(y) dy = 0 for

all x. Then f(y) = 0 a.e.

Proof. We will show that
∫
f(y)φ(y) dy = 0 for all φ ∈ C2

c ([a, b]), and the
result follows by density of C2

c in L2. We then write∫ b

a
f(y)φ(y) dy =

∫ b

a
f(y)

(∫ b

a
G(y, x) (Lφ)(x) dx

)
dy

=

∫ b

a

(∫ b

a
G(x, y) f(y) dy

)
(Lφ)(x) dx

using Fubini’s theorem. �

The operator Tf(x) =
∫ b
a G(x, y)f(y) dy is then a self-adjoint, compact op-

erator on L2([a, b]), and 0 is not an eigenvalue of T . There thus exists an
orthonormal basis {uj}∞j=1 for L2([a, b]), where∫ b

a
G(x, y)uj(y) dy = νj uj(x) , νj 6= 0 .

Since the left hand side is continuous in x so is uj(x), and thus the left hand
side belongs to C2

B([a, b]), and so uj ∈ C2
B([a, b]). We then have

Luj = λj uj , λj = ν−1j ,
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and by Lemma 2 each eigenspace is 1-dimensional (separated boundary con-
ditions). We have arranged that λj ≤ −1, which means we can order them
so that λj → −∞ in a decreasing manner. The eigenvalues for the original
problem are λj + λ0, which still decrease to −∞, but there may be finitely
many positive eigenvalues, depending on q and the boundary conditions.


