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aij(x) > 0 , ρ(x) > 0 , Lipschitz

Eigenbasis: Di
(

aijDjφj
)

= λ2
j ρ φj ( λj = frequency )

Spectral Cluster, frequency λ :

u =
∑

λj∈[λ,λ+1]

cj φj

Goal: find sharp powers δ(p) such that

‖u‖Lp(M)

‖u‖L2(M)

. λδ(p) ( p ≥ 2 )
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Reduce problem to dispersive estimates:

Localize û(ξ) near ξ1-axis

Set x1 = t , x2 = x , factor

−Di aijDj + λ2ρ = a00(∂t + iPλ(t , x ,Dx )
)(
∂t − i P̃λ(t , x ,Dx )

)
Prove for

(
∂t + iPλ(t , x ,Dx )

)
u = 0

‖u‖Lp . λδ(p)‖u0‖L2
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Estimates no better than domains with boundary.

Metric d2
x2

+ (1 + |x2|) d2
x1
≈ interior of disc
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Koch-S.-Tataru [2010]
Best possible estimates in dimension n = 2 , for 8 < p ≤ ∞,
and for p = 8 with loss of (logλ)α.
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For p = 6, hold by short-time |t | ≤ λ−1/3 parametrix.
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Short time parametrices alone can’t yield sharp results

A single angle-1 bush (conically localized zonal eigenfunction)
saturates Lp estimates, p ≥ 8

1/3
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λ1/3 terms⇒ loss of λ1/3p in estimates
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Need control energy flow for |t | > λ−1/3

Problem: bi-characteristic flow not well-posed

ẋ = pξ(t , x , ξ) ∈ Lipx , ξ̇ = px (t , x , ξ) ∈ L∞x

All that you can control:

|ẍ | . 1 , |ξ̇| . λ

Metric d2
x2

+ (1− |x2|)d2
x1
⇒ bifurcation:
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Heuristics behind energy control, |ẍ | . 1 , |ξ̇| . λ

Stable regions of phase space for time δ:

|x − x0| ≤ δ2 , |ξ − ξ0| ≤ λδ

Integral curves through (x , ξ) satisfy

|x(t)− v0t − x0| . δ2 , |ξ(t)− ξ0| . λδ , |t | ≤ δ

2

x

t

Uncertainty principle: δ ≥ λ−1/3
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Angle θ bush can reoccur only after time θ

1/3

Hart F. Smith Lp Bounds for Spectral Clusters



First use of energy flow arguments...

Koch-S.-Tataru [2008]

For p = 8,10,12, . . . , loss of 2(6−p)/2/3p
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Tube overlap count⇒ `q(cubes) bounds on energy

Induction: log loss Lp on δ2 cubes⇒ log loss Lp+2 on δ cubes.

1/3
1/6

p = 8: log-loss estimates on slabs ∆t ≤ λ−1/6
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New proof: expand u in short-time tube solutions

Set ‖u0‖2 = 1, expand u in tube frame each λ−1/3 time slab.
At cost of logλ, consider ua = with tubes of amplitude ≈ a.

1/3
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Identify regions with overlap 2m

2m-bushes remains overlapped for time ≤ 2−mλ−
1
3

1/3
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Two key propositions: amplitude a tubes, overlap 2m

Proposition 1: bush counting

There are at most ≈ λ1/3 2−3ma−4 intervals that contain a
2m-bush

Energy-1 bush has 2m a2 = 1; at most λ1/3 2−m such bushes.

Proposition 2: local L8 bounds

On each interval, where Aa,m = 2m-overlap region,

‖ua‖L8(I ∩Aa,m) . λ5/24 23m/8a1/2 .

Sum over I, ‖ua‖L8(Aa,m) . λ1/4, log-loss in sum over m.
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Local L8: geometry essentially flat each λ−1/3 interval

Key ingredients:

Bi-linear estimates handle large angle interactions.

Strichartz estimates handle small angle interactions.

Tube / wave packet representation of solutions
well-adapted to proving both bilinear and Strichartz
in low dimensions.

On 2m-overlap region Aa,m have L∞ bounds.

Interpolate with L4 and L6 to get L8.
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Bush-counting: energy flow for Lipschitz metrics

Key estimate: bound energy coupling between 2m-bushes at
distinct times.
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S(t , t ′) = evolution operator for ∂t + iP(t , x ,Dx)

Let Pj be projection onto 2m-bush at time tj :

‖P1 S(t1, t0) P0‖L2→L2 . 2−mλ−1/3|t1 − t0|−1 + 2−mλ1/3|t1 − t0|
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Higher dimensions: sharp bounds on smaller range

Main problem: wrong decay for bush-interaction P1S(t1, t0)P0.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension n,

‖Π[λ,λ+1]u‖p . λ
n−1

2 −
n
p ,

4n + 2
n − 1

< p ≤ ∞ .

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension n,

‖Π[λ,λ+1]u‖p . λ
2
3 (n−1)( 1

2−
1
p )
, 2 ≤ p ≤ 2n + 2

n − 1
.
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Dimension n = 3: critical estimate is λ2/5 for p = 5
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