Lp Bounds for Spectral Clusters for Lipschitz Metrics

Hart F. Smith

Department of Mathematics University of Washington, Seattle

Hangzhou Conference on Harmonic Analysis and PDE's

ヘロト ヘ戸ト ヘヨト ヘヨト

$a^{ij}(x) > 0$, ho(x) > 0, Lipschitz

• Eigenbasis:
$$D_iig(a^{ij}D_j\phi_jig)=\lambda_j^2\,
ho\,\phi_j$$
 ($\lambda_j=$ frequency)

• Spectral Cluster, frequency λ :

$$u = \sum_{\lambda_j \in [\lambda, \lambda+1]} c_j \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$\frac{\|\boldsymbol{u}\|_{L^{p}(\boldsymbol{M})}}{\|\boldsymbol{u}\|_{L^{2}(\boldsymbol{M})}} \lesssim \lambda^{\delta(\boldsymbol{p})} \qquad (\boldsymbol{p} \ge \boldsymbol{2})$$

<回とくほとくほと…

3

Reduce problem to dispersive estimates:

• Localize $\hat{u}(\xi)$ near ξ_1 -axis

• Set
$$x_1 = t$$
, $x_2 = x$, factor
 $-D_i a^{ij}D_j + \lambda^2 \rho = a^{00} (\partial_t + iP_\lambda(t, x, D_x)) (\partial_t - i\tilde{P}_\lambda(t, x, D_x))$

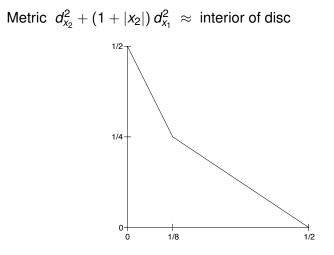
• Prove for
$$(\partial_t + i P_\lambda(t, x, D_x)) u = 0$$

 $\|u\|_{L^p} \lesssim \lambda^{\delta(p)} \|u_0\|_{L^2}$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

Estimates no better than domains with boundary.

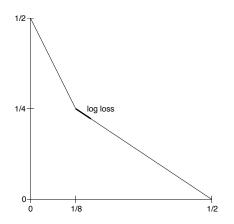


(4) E > (4) E > (1)

э

Koch-S.-Tataru [2010]

Best possible estimates in dimension n = 2, for 8 , and for <math>p = 8 with loss of $(\log \lambda)^{\alpha}$.

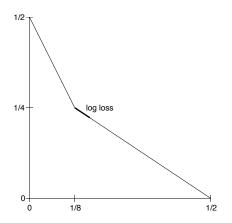


For p = 6, hold by short-time $|t| \le \lambda^{-1/3}$ parametrix

Hart F. Smith Lp Bounds for Spectral Clusters

Koch-S.-Tataru [2010]

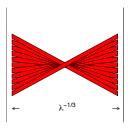
Best possible estimates in dimension n = 2, for 8 , and for <math>p = 8 with loss of $(\log \lambda)^{\alpha}$.



For p = 6, hold by short-time $|t| \le \lambda^{-1/3}$ parametrix.

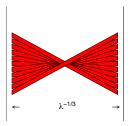
Short time parametrices alone can't yield sharp results

A single angle-1 bush (conically localized zonal eigenfunction) saturates L^{ρ} estimates, $\rho \ge 8$



Short time parametrices alone can't yield sharp results

A single angle-1 bush (conically localized zonal eigenfunction) saturates L^{p} estimates, $p \ge 8$



 $\lambda^{1/3}$ terms \Rightarrow loss of $\lambda^{1/3p}$ in estimates

Need control energy flow for $|t| > \lambda^{-1/3}$

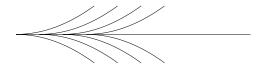
Problem: bi-characteristic flow not well-posed

$$\dot{x} = p_{\xi}(t, x, \xi) \in Lip_x, \qquad \dot{\xi} = p_x(t, x, \xi) \in L^{\infty}_x$$

All that you can control:

$$|\ddot{x}| \lesssim 1$$
, $|\dot{\xi}| \lesssim \lambda$

Metric $d_{x_2}^2 + (1 - |x_2|)d_{x_1}^2 \Rightarrow$ bifurcation:



Heuristics behind energy control, $|\ddot{x}| \lesssim 1$, $|\dot{\xi}| \lesssim \lambda$

Stable regions of phase space for time δ :

$$|\boldsymbol{x} - \boldsymbol{x}_0| \le \delta^2$$
, $|\boldsymbol{\xi} - \boldsymbol{\xi}_0| \le \lambda \delta$

Integral curves through (x, ξ) satisfy

 $|x(t) - v_0 t - x_0| \lesssim \delta^2 \,, \qquad |\xi(t) - \xi_0| \lesssim \lambda \delta \,, \quad |t| \leq \delta$

Uncertainty principle: $\delta \ge \lambda^{-1/3}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Heuristics behind energy control, $|\ddot{x}| \lesssim 1$, $|\dot{\xi}| \lesssim \lambda$

Stable regions of phase space for time δ :

$$|\boldsymbol{x} - \boldsymbol{x}_0| \le \delta^2$$
, $|\boldsymbol{\xi} - \boldsymbol{\xi}_0| \le \lambda \delta$

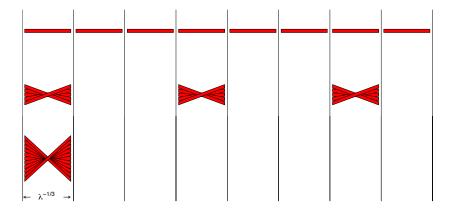
Integral curves through (x, ξ) satisfy

 $|x(t) - v_0 t - x_0| \lesssim \delta^2 \,, \qquad |\xi(t) - \xi_0| \lesssim \lambda \delta \,, \quad |t| \leq \delta$

Uncertainty principle: $\delta \ge \lambda^{-1/3}$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Angle θ bush can reoccur only after time θ



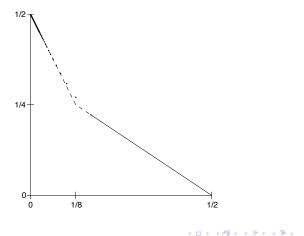
▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

2

First use of energy flow arguments...

Koch-S.-Tataru [2008]

For $p = 8, 10, 12, \dots$, loss of $2^{(6-p)/2}/3p$

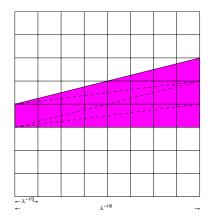


Hart F. Smith Lp Bounds for Spectral Clusters

3

Tube overlap count $\Rightarrow \ell^q$ (cubes) bounds on energy

Induction: log loss L^p on δ^2 cubes \Rightarrow log loss L^{p+2} on δ cubes.

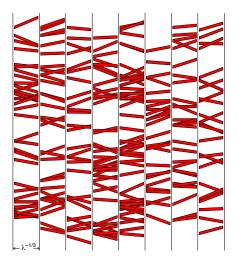


p = 8: log-loss estimates on slabs $\Delta t \leq \lambda^{-1/6}$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

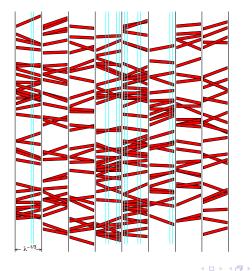
New proof: expand *u* in short-time tube solutions

Set $||u_0||_2 = 1$, expand *u* in tube frame each $\lambda^{-1/3}$ time slab. At cost of log λ , consider u_a = with tubes of amplitude $\approx a$.



Identify regions with overlap 2^m

2^{*m*}-bushes remains overlapped for time $\leq 2^{-m}\lambda^{-\frac{1}{3}}$



Hart F. Smith Lp Bounds for Spectral Clusters

(◆臣) ◆臣) ○

3

Two key propositions: amplitude a tubes, overlap 2^m

Proposition 1: bush counting

There are at most $\approx \lambda^{1/3} 2^{-3m} a^{-4}$ intervals that contain a 2^m -bush

Energy-1 bush has $2^m a^2 = 1$; at most $\lambda^{1/3} 2^{-m}$ such bushes.

Proposition 2: local L^8 bounds

On each interval, where $A_{a,m} = 2^m$ -overlap region,

$$\|u_a\|_{L^8(I\cap A_{a,m})} \lesssim \lambda^{5/24} \, 2^{3m/8} a^{1/2} \, .$$

Sum over I, $\|u_a\|_{L^8(\mathcal{A}_{a.m})}\lesssim \lambda^{1/4}$, log-loss in sum over m.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - つへの

Two key propositions: amplitude a tubes, overlap 2^m

Proposition 1: bush counting

There are at most $\approx \lambda^{1/3} 2^{-3m} a^{-4}$ intervals that contain a 2^m -bush

Energy-1 bush has $2^m a^2 = 1$; at most $\lambda^{1/3} 2^{-m}$ such bushes.

Proposition 2: local L^8 bounds

On each interval, where $A_{a,m} = 2^m$ -overlap region,

$$\|u_a\|_{L^8(I\cap A_{a,m})} \lesssim \lambda^{5/24} \, 2^{3m/8} a^{1/2}$$

Sum over I, $\|u_a\|_{L^8(\mathcal{A}_{a.m})}\lesssim \lambda^{1/4}$, log-loss in sum over m.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two key propositions: amplitude a tubes, overlap 2^m

Proposition 1: bush counting

There are at most $\approx \lambda^{1/3} 2^{-3m} a^{-4}$ intervals that contain a 2^m -bush

Energy-1 bush has $2^m a^2 = 1$; at most $\lambda^{1/3} 2^{-m}$ such bushes.

Proposition 2: local L^8 bounds

On each interval, where $A_{a,m} = 2^m$ -overlap region,

$$\|u_a\|_{L^8(I\cap A_{a,m})} \lesssim \lambda^{5/24} \, 2^{3m/8} a^{1/2}$$

Sum over I, $||u_a||_{L^8(A_{a,m})} \lesssim \lambda^{1/4}$, log-loss in sum over m.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Key ingredients:

- Bi-linear estimates handle large angle interactions.
- Strichartz estimates handle small angle interactions.

Tube / wave packet representation of solutions well-adapted to proving both bilinear and Strichartz in low dimensions.

• On 2^m -overlap region $A_{a,m}$ have L^{∞} bounds.

Interpolate with L^4 and L^6 to get L^8 .

Key ingredients:

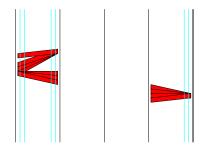
- Bi-linear estimates handle large angle interactions.
- Strichartz estimates handle small angle interactions.

Tube / wave packet representation of solutions well-adapted to proving both bilinear and Strichartz in low dimensions.

• On 2^m -overlap region $A_{a,m}$ have L^{∞} bounds.

```
Interpolate with L^4 and L^6 to get L^8.
```

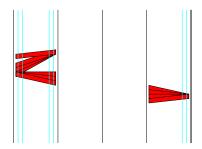
Key estimate: bound energy coupling between 2^m -bushes at distinct times.



S(t, t') = evolution operator for $\partial_t + iP(t, x, D_x)$

Let P_i be projection onto 2^m -bush at time t_i :

$$\|P_1 S(t_1, t_0) P_0\|_{L^2 \to L^2} \lesssim 2^{-m} \lambda^{-1/3} |t_1 - t_0|^{-1} + 2^{-m} \lambda^{1/3} |t_1 - t_0|$$



Hart F. Smith Lp Bounds for Spectral Clusters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Higher dimensions: sharp bounds on smaller range

Main problem: wrong decay for bush-interaction $P_1 S(t_1, t_0) P_0$.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{n-1}{2}-\frac{n}{p}}, \quad \frac{4n+2}{n-1}$$

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{2}{3}(n-1)(\frac{1}{2}-\frac{1}{p})}, \quad 2 \le p \le \frac{2n+2}{n-1}.$$

イロト イポト イヨト イヨト

Higher dimensions: sharp bounds on smaller range

Main problem: wrong decay for bush-interaction $P_1 S(t_1, t_0) P_0$.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{n-1}{2}-\frac{n}{p}}, \quad \frac{4n+2}{n-1}$$

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{2}{3}(n-1)(\frac{1}{2}-\frac{1}{p})}, \quad 2 \le p \le \frac{2n+2}{n-1}.$$

・ロト ・同ト ・ヨト ・ヨト

Higher dimensions: sharp bounds on smaller range

Main problem: wrong decay for bush-interaction $P_1 S(t_1, t_0) P_0$.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{n-1}{2}-\frac{n}{p}}, \quad \frac{4n+2}{n-1}$$

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension *n*,
$$\|\Pi_{[\lambda,\lambda+1]}u\|_{p} \lesssim \lambda^{\frac{2}{3}(n-1)(\frac{1}{2}-\frac{1}{p})}, \quad 2 \leq p \leq \frac{2n+2}{n-1}.$$

Dimension n = 3: critical estimate is $\lambda^{2/5}$ for p = 5

