Concentration of Eigenfunctions in Rough Media

Hart F. Smith

Department of Mathematics University of Washington, Seattle

UC Irvine - June 18, 2012

M =compact manifold with volume form

- Elliptic form $a^{ij}(x)$, weight function $\rho(x)$ Eigenbasis: $D(a D\phi_j) = \lambda_j^2 \rho \phi_j$ (λ_j = frequency)
- Spectral Cluster, frequency λ :

$$f = \sum_{\lambda_j \in [\lambda, \lambda + 1]} c_j \, \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$\frac{\|f\|_{L^p(M)}}{\|f\|_{L^2(M)}} \lesssim \lambda^{\delta(p)} \qquad (p \ge 2)$$

M =compact manifold with volume form

- Elliptic form $a^{ij}(x)$, weight function $\rho(x)$ Eigenbasis: $D(a D\phi_j) = \lambda_j^2 \rho \phi_j$ (λ_j = frequency)
- Spectral Cluster, frequency λ :

$$f = \sum_{\lambda_j \in [\lambda, \lambda + 1]} c_j \, \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$\frac{\|f\|_{L^p(M)}}{\|f\|_{L^2(M)}} \lesssim \lambda^{\delta(p)} \qquad (p \ge 2)$$

M =compact manifold with volume form

- Elliptic form $a^{ij}(x)$, weight function $\rho(x)$ Eigenbasis: $D(a D\phi_j) = \lambda_j^2 \rho \phi_j$ (λ_j = frequency)
- Spectral Cluster, frequency λ :

$$f = \sum_{\lambda_j \in [\lambda, \lambda + 1]} c_j \, \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$rac{\|f\|_{L^p(M)}}{\|f\|_{L^2(M)}}\lesssim \lambda^{\delta(p)}\qquad ext{ ($p\geq 2$)}$$

Saturating examples on \mathbb{R}^n : $1 \times \lambda^{-1/2}$ tube

Lower bound

$$\delta(p) \geq \frac{(n-1)}{2}(\frac{1}{2} - \frac{1}{p})$$

Saturating examples on \mathbb{R}^n : angle-1 bush

Lower bound

$$\delta(p) \geq n(\tfrac{1}{2} - \tfrac{1}{p}) - \tfrac{1}{2}$$

Theorem: Sogge [1988]

If
$$a^{ij}(x)$$
, $\rho(x) \in C^{\infty}(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(p) = \begin{cases} \frac{n-1}{2} \left(\frac{1}{2} - \frac{1}{p} \right), & 2 \le p \le \frac{2(n+1)}{n-1} \\ n \left(\frac{1}{2} - \frac{1}{p} \right) - \frac{1}{2}, & \frac{2(n+1)}{n-1} \le p \le \infty \end{cases}$$

Theorem: Smith [2002]

Same results hold for $a^{ij}(x)$, $\rho(x) \in C^{1,1}(M)$.

Theorem: Sogge [1988]

If
$$a^{ij}(x)$$
, $\rho(x) \in C^{\infty}(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(p) = \begin{cases} \frac{n-1}{2} (\frac{1}{2} - \frac{1}{p}), & 2 \le p \le \frac{2(n+1)}{n-1} \\ n(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}, & \frac{2(n+1)}{n-1} \le p \le \infty \end{cases}$$

Theorem: Smith [2002]

Same results hold for $a^{ij}(x)$, $\rho(x) \in C^{1,1}(M)$.

Grieser [1992] / Smith-Sogge [1994]

Sogge's spectral cluster estimates can fail for a^{ij} , $\rho \in C^s$, s < 2

Example: $a^{ij}(x) = \delta^{ij}$, $\rho(x) = 1 - |x'|^s$

Singular bicharacteristic flow:

"Tube"-eigenfunction f(x) exponentially localized to $|x'| \le \lambda^{-\frac{2}{2+s}}$

Lower bound for C^s coefficients

$$\delta(p) \geq \frac{2(n-1)}{2+s}(\frac{1}{2}-\frac{1}{p})$$

Grieser [1992] / Smith-Sogge [1994]

Sogge's spectral cluster estimates can fail for a^{ij} , $\rho \in C^s$, s < 2

Example:
$$a^{ij}(x) = \delta^{ij}$$
, $\rho(x) = 1 - |x'|^s$

Singular bicharacteristic flow:

"Tube"-eigenfunction f(x) exponentially localized to $|x'| \le \lambda^{-\frac{2}{2+s}}$

Lower bound for C^s coefficients

$$\delta(p) \geq \frac{2(n-1)}{2+s}(\frac{1}{2}-\frac{1}{p})$$

Partial sharp results for $1 \le s < 2$:

Theorem: Smith [2002]

If
$$a^{ij}(x)$$
, $\rho(x) \in C^s(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(p) = \begin{cases} \frac{2(n-1)}{2+s} \left(\frac{1}{2} - \frac{1}{p} \right), & 2 \le p \le \frac{2(n+1)}{n-1} \\ \frac{n-1}{2}, & p = \infty \end{cases}$$

- C^2 -scale $R = \lambda^{-\frac{2-s}{2+s}}$: a spectral cluster for C^s metric rescaled by R behaves like spectral cluster for C^2 metric.
- Sogge's estimates hold on sets of size R: sum over pieces get sharp results for $p = \frac{2(n+1)}{n-1}$ and $p = \infty$.

Summation uses energy conservation: need $s \ge 1$

Partial sharp results for $1 \le s < 2$:

Theorem: Smith [2002]

If $a^{ij}(x)$, $\rho(x) \in C^s(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(\textbf{p}) = \begin{cases} \frac{2(n-1)}{2+s} \left(\frac{1}{2} - \frac{1}{p} \right), & 2 \leq \textbf{p} \leq \frac{2(n+1)}{n-1} \\ \frac{n-1}{2}, & \textbf{p} = \infty \end{cases}$$

- C^2 -scale $R = \lambda^{-\frac{2-s}{2+s}}$: a spectral cluster for C^s metric rescaled by R behaves like spectral cluster for C^2 metric.
- Sogge's estimates hold on sets of size R: sum over pieces get sharp results for $p = \frac{2(n+1)}{n-1}$ and $p = \infty$.

Summation uses energy conservation: need $s \ge 1$

Partial sharp results for $1 \le s < 2$:

Theorem: Smith [2002]

If $a^{ij}(x)$, $\rho(x) \in C^s(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(p) = \begin{cases} \frac{2(n-1)}{2+s} \left(\frac{1}{2} - \frac{1}{p} \right), & 2 \le p \le \frac{2(n+1)}{n-1} \\ \frac{n-1}{2}, & p = \infty \end{cases}$$

- C^2 -scale $R = \lambda^{-\frac{2-s}{2+s}}$: a spectral cluster for C^s metric rescaled by R behaves like spectral cluster for C^2 metric.
- Sogge's estimates hold on sets of size R: sum over pieces get sharp results for $p=\frac{2(n+1)}{n-1}$ and $p=\infty$.

Summation uses energy conservation: need $s \ge 1$

For s < 1, exponentially localized eigenfunctions

Colombini-Spagnolo [1989]

There exist $\rho_{\epsilon}(t) = 1 + \epsilon q_1(t) + \epsilon^2 q_2(t)$ with eigenfunction

$$w_{\epsilon}''(t) + \rho_{\epsilon}(t)w_{\epsilon}(t) = 0$$

with

$$|\mathbf{w}_{\epsilon}(t)| \lesssim e^{-\epsilon|t|}$$

For $0 \le s < 1$, exponentially localized eigenfunctions

Castro-Zuazua [2002]

Take $\epsilon=\lambda^{-s}$, rescale, then $\rho_{\lambda^{-s}}(\lambda x)\in \mathcal{C}^s(\mathbb{R})$, eigenfunction

$$|w(x)| \lesssim e^{\lambda^{1-s}|x|}$$

Koch-Smith-Tataru [2006]

Constructed $C^s(\mathbb{R}^n)$ functions $a^{ij}(x)$, $\rho(x)$ with:

- Radial (bush) eigenfunctions localized to $|x| \le \lambda^{s-1}$
- \bullet Tube eigenfunctions localized to $|x'| \lesssim \lambda^{-\frac{2}{2+s}}\,,\, |x_1| \lesssim \lambda^{s-1}$

$$\frac{\|f\|_{L^p}}{\|f\|_{L^2}} \gtrsim \lambda^{n(\frac{1}{2} - \frac{1}{p}) - \frac{s}{2}}, \qquad \frac{\|f\|_{L^p}}{\|f\|_{L^2}} \gtrsim \lambda^{\left(\frac{2}{2+s}(n-1) + 1 - s\right)\left(\frac{1}{2} - \frac{1}{p}\right)}$$

Partial sharp results for $0 \le s < 1$:

Theorem: Koch-Smith-Tataru [2006]

If
$$a^{ij}(x)$$
, $\rho(x) \in C^s(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(p) = \begin{cases} \left(\frac{2}{2+s}(n-1)+1-s\right)\left(\frac{1}{2}-\frac{1}{p}\right), & 2 \leq p \leq \frac{2(n+1)}{n-1} \\ \frac{n-s}{2}, & p = \infty \end{cases}$$

• C^1 -scale $T = \lambda^{s-1}$: Energy conservation for frequency λ solutions to a C^s equation holds over distance T.

For s = 0 no better than Sobolev embedding (Davies [1990])

Partial sharp results for $0 \le s < 1$:

Theorem: Koch-Smith-Tataru [2006]

If
$$a^{ij}(x)$$
, $\rho(x) \in C^s(M)$, then $||f||_{L^p(M)} \lesssim \lambda^{\delta(p)} ||f||_{L^2(M)}$,

$$\delta(\rho) = \begin{cases} \left(\frac{2}{2+s}(n-1)+1-s\right)\left(\frac{1}{2}-\frac{1}{\rho}\right), & 2 \leq \rho \leq \frac{2(n+1)}{n-1} \\ \frac{n-s}{2}, & \rho = \infty \end{cases}$$

• C^1 -scale $T = \lambda^{s-1}$: Energy conservation for frequency λ solutions to a C^s equation holds over distance T.

For s = 0 no better than Sobolev embedding (Davies [1990])

Partial sharp results for $0 \le s < 1$:

Theorem: Koch-Smith-Tataru [2006]

If
$$a^{ij}(x)$$
, $\rho(x) \in C^s(M)$, then $\|f\|_{L^p(M)} \lesssim \lambda^{\delta(p)} \|f\|_{L^2(M)}$,

$$\delta(\rho) = \begin{cases} \left(\frac{2}{2+s}(n-1)+1-s\right)\left(\frac{1}{2}-\frac{1}{\rho}\right), & 2 \leq \rho \leq \frac{2(n+1)}{n-1} \\ \frac{n-s}{2}, & \rho = \infty \end{cases}$$

• C^1 -scale $T = \lambda^{s-1}$: Energy conservation for frequency λ solutions to a C^s equation holds over distance T.

For s = 0 no better than Sobolev embedding (Davies [1990])

Koch-Smith-Tataru [2012]

For a^{ij} , $\rho \in \text{Lipschitz}$, best possible estimates in dimension n=2, up to loss of $(\log \lambda)^{\alpha}$ for 6 .

For $p \le 6$, $p = \infty$, hold by estimates over C^2 -scale $R = \lambda^{-1/3}$.

Koch-Smith-Tataru [2012]

For a^{ij} , $\rho \in \text{Lipschitz}$, best possible estimates in dimension n=2, up to loss of $(\log \lambda)^{\alpha}$ for 6 .

For $p \le 6$, $p = \infty$, hold by estimates over C^2 -scale $R = \lambda^{-1/3}$.

For $6 the <math>C^2$ -scale estimates alone can't yield sharp results.

A single angle-1 bush saturates L^p estimates over M for $p \ge 8$.

For $6 the <math>C^2$ -scale estimates alone can't yield sharp results

A single angle-1 bush saturates L^p estimates over M for $p \ge 8$.

 $\lambda^{1/3}$ terms \Rightarrow loss of $\lambda^{1/3p}$ in estimates

Need control energy flow over scales $\gg \lambda^{-1/3}$

Problem: bi-characteristic flow not well-posed

$$\dot{x} = p_{\xi}(t, x, \xi) \in Lip_{x}S_{\xi}^{0}, \qquad \dot{\xi} = p_{x}(t, x, \xi) \in L_{x}^{\infty}S_{\xi}^{1}$$

All that you can control:

$$|\ddot{x}| \lesssim 1$$
, $|\dot{\xi}| \lesssim \lambda$

Metric $d_{x_2}^2 + (1 - |x_2|)d_{x_1}^2 \Rightarrow \text{ bifurcation:}$

Heuristics behind energy control, $|\ddot{x}| \lesssim 1$, $|\dot{\xi}| \lesssim \lambda$

Stable regions of phase space for time δ :

$$|x - x_0| \le \delta^2$$
, $|\xi - \xi_0| \le \lambda \delta$

Integral curves through (x, ξ) satisfy

$$|x(t)-v_0t-x_0|\lesssim \delta^2$$
, $|\xi(t)-\xi_0|\lesssim \lambda\delta$, $|t|\leq \delta$

Uncertainty principle: $\delta \geq \lambda^{-1/3}$

Heuristics behind energy control, $|\ddot{x}| \lesssim 1$, $|\dot{\xi}| \lesssim \lambda$

Stable regions of phase space for time δ :

$$|x - x_0| \le \delta^2$$
, $|\xi - \xi_0| \le \lambda \delta$

Integral curves through (x, ξ) satisfy

$$|x(t)-v_0t-x_0|\lesssim \delta^2$$
, $|\xi(t)-\xi_0|\lesssim \lambda\delta$, $|t|\leq \delta$

Uncertainty principle: $\delta \geq \lambda^{-1/3}$

Angle θ bush can reoccur only after time θ

New proof: expand *u* in short-time tube solutions

Set $||u_0||_2 = 1$, expand u in tube frame each $\lambda^{-1/3}$ time slab. At cost of $\log \lambda$, consider $u_a =$ with tubes of amplitude $\approx a$.

Identify regions with overlap 2^m

 2^m -bushes remains overlapped for time $\leq 2^{-m} \lambda^{-\frac{1}{3}}$

Two key propositions: amplitude a tubes, overlap 2^m

Proposition 1: bush counting

There are at most $\approx \lambda^{1/3} \, 2^{-3m} a^{-4}$ intervals that contain a 2^m -bush

Energy-1 bush has $2^m a^2 = 1$; at most $\lambda^{1/3} 2^{-m}$ such bushes.

Proposition 2: local *L*⁸ bounds

On each interval, where $A_{a,m} = 2^m$ -overlap region,

$$||u_a||_{L^8(I\cap A_{a,m})} \lesssim \lambda^{5/24} \, 2^{3m/8} a^{1/2} \, .$$

Sum over I, $\|u_a\|_{L^8(A_{a,m})} \lesssim \lambda^{1/4}$, log-loss in sum over m.

Two key propositions: amplitude a tubes, overlap 2^m

Proposition 1: bush counting

There are at most $\approx \lambda^{1/3} \, 2^{-3m} a^{-4}$ intervals that contain a 2^m -bush

Energy-1 bush has $2^m a^2 = 1$; at most $\lambda^{1/3} 2^{-m}$ such bushes.

Proposition 2: local L⁸ bounds

On each interval, where $A_{a,m} = 2^m$ -overlap region,

$$||u_a||_{L^8(I\cap A_{a,m})} \lesssim \lambda^{5/24} \, 2^{3m/8} a^{1/2} \, .$$

Sum over I, $\|u_a\|_{L^8(A_{a,m})} \lesssim \lambda^{1/4}$, log-loss in sum over m.

Two key propositions: amplitude a tubes, overlap 2^m

Proposition 1: bush counting

There are at most $\approx \lambda^{1/3} \, 2^{-3m} a^{-4}$ intervals that contain a 2^m -bush

Energy-1 bush has $2^m a^2 = 1$; at most $\lambda^{1/3} 2^{-m}$ such bushes.

Proposition 2: local L⁸ bounds

On each interval, where $A_{a,m} = 2^m$ -overlap region,

$$||u_a||_{L^8(I\cap A_{a,m})} \lesssim \lambda^{5/24} \, 2^{3m/8} a^{1/2} \, .$$

Sum over I, $||u_a||_{L^8(A_{a,m})} \lesssim \lambda^{1/4}$, log-loss in sum over m.

Local L^8 : geometry essentially flat each $\lambda^{-1/3}$ interval

Key ingredients:

- Bi-linear estimates handle large angle interactions.
- Strichartz estimates handle small angle interactions.

Tube / wave packet representation of solutions well-adapted to proving both bilinear and Strichartz in low dimensions.

• On 2^m -overlap region $A_{a,m}$ have L^{∞} bounds.

Interpolate with L^4 and L^6 to get L^8 .

Local L^8 : geometry essentially flat each $\lambda^{-1/3}$ interval

Key ingredients:

- Bi-linear estimates handle large angle interactions.
- Strichartz estimates handle small angle interactions.

Tube / wave packet representation of solutions well-adapted to proving both bilinear and Strichartz in low dimensions.

• On 2^m -overlap region $A_{a,m}$ have L^{∞} bounds.

Interpolate with L^4 and L^6 to get L^8 .

Bush-counting: energy flow for Lipschitz metrics

Key estimate: bound energy coupling between 2^m -bushes at distinct times.

S(t, t') = evolution operator for $\partial_t + iP(t, x, D_x)$

Let P_j be projection onto 2^m -bush at time t_j :

$$\|P_1 \, S(t_1,t_0) \, P_0\|_{L^2 \to L^2} \lesssim 2^{-m} \lambda^{-1/3} |t_1 - t_0|^{-1} + 2^{-m} \lambda^{1/3} |t_1 - t_0|$$

Higher dimensions: sharp bounds on smaller range

Problem: wrong decay for bush-interaction $P_1 S(t_1, t_0) P_0$.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension *n*,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{n(\frac{1}{2}-\frac{1}{p})-\frac{1}{2}}\|u\|_2, \quad \frac{6n-2}{n-1}$$

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension *n*,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{2}{3}(n-1)(\frac{1}{2}-\frac{1}{p})}\|u\|_2, \quad 2 \leq p \leq \frac{2(n+1)}{n-1}.$$

Higher dimensions: sharp bounds on smaller range

Problem: wrong decay for bush-interaction $P_1 S(t_1, t_0) P_0$.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]} u\|_{\rho} \lesssim \lambda^{n(\frac{1}{2}-\frac{1}{\rho})-\frac{1}{2}} \|u\|_{2}\,, \quad \frac{6n-2}{n-1} < \rho \leq \infty\,.$$

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{2}{3}(n-1)(\frac{1}{2}-\frac{1}{p})}\|u\|_2, \quad 2 \leq p \leq \frac{2(n+1)}{n-1}.$$

Higher dimensions: sharp bounds on smaller range

Problem: wrong decay for bush-interaction $P_1 S(t_1, t_0) P_0$.

Gives sharp estimates for large p:

[Koch-S.-Tataru] Lipschitz metrics, dimension n,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_{\rho} \lesssim \lambda^{n(\frac{1}{2}-\frac{1}{\rho})-\frac{1}{2}}\|u\|_{2}\,,\quad \frac{6n-2}{n-1} < \rho \leq \infty\,.$$

Short time parametrix gives sharp estimates for small p:

[S.] Lipschitz metrics, dimension *n*,

$$\|\Pi_{[\lambda,\lambda+1]}u\|_p \lesssim \lambda^{\frac{2}{3}(n-1)(\frac{1}{2}-\frac{1}{p})}\|u\|_2, \quad 2 \leq p \leq \frac{2(n+1)}{n-1}.$$

Dimension n = 3: critical estimate is $\lambda^{2/5}$ for p = 5

