Cubic Scaling for Caustics and Tangential Reflections

Hart F. Smith

Department of Mathematics University of Washington, Seattle

2008 SIAM Conference on Imaging Science

Second Dyadic Decomposition

Frequency sectors: $2^k < |\xi| < 2^{k+1}$, $\angle(\omega, \xi) \le 2^{-k/2}$

Curvelets:
$$\varphi_{\gamma}(y) = 2^{-3k/4} \overline{\psi_{\omega,k}(y-x)}$$

Frequency support:

Spatial support:

Curvelets are "coherent" wave-packets

Linearization of phase functions

$$extbf{ extit{W}}_t arphi_\gamma(extbf{ extit{x}}) = \int extbf{e}^{i\phi(t, extbf{ extit{x}},\xi)} \widehat{arphi}_\gamma(\xi) \, extbf{ extit{d}} \xi$$

• On second dyadic sector: $\phi(t, x, \xi) \approx y_t(x) \cdot \xi$

$$W_t \varphi_{\gamma}(\mathbf{x}) \approx \varphi_{\gamma}(\mathbf{y}_t(\mathbf{x}))$$

Second dyadic decomposition of frequency space:

Largest sectors on which standard phase functions well-approximated by linear phase functions.

Linearization of phase functions

$$W_t arphi_{\gamma}(\mathbf{x}) = \int \mathsf{e}^{i\phi(t,\mathbf{x},\xi)} \widehat{arphi}_{\gamma}(\xi) \, \mathsf{d}\xi$$

• On second dyadic sector: $\phi(t, x, \xi) \approx y_t(x) \cdot \xi$

$$W_t \varphi_{\gamma}(\mathbf{x}) \approx \varphi_{\gamma}(\mathbf{y}_t(\mathbf{x}))$$

Second dyadic decomposition of frequency space:

Largest sectors on which standard phase functions well-approximated by linear phase functions.

Linearization of phase functions

$$W_t arphi_\gamma(\mathbf{x}) = \int \mathsf{e}^{i\phi(t,\mathbf{x},\xi)} \widehat{arphi}_\gamma(\xi) \, \mathsf{d} \xi$$

• On second dyadic sector: $\phi(t, x, \xi) \approx y_t(x) \cdot \xi$

$$W_t \varphi_{\gamma}(\mathbf{x}) \approx \varphi_{\gamma}(\mathbf{y}_t(\mathbf{x}))$$

Second dyadic decomposition of frequency space:

Largest sectors on which standard phase functions well-approximated by linear phase functions.

Smith (1998)

Use curvelets to construct wave evolution

First approximation to wave flow:

Candés-Donoho (2003)

Optimal approximation to images with jump along C^2 curves

Caustics in wavefronts

Generic wavefronts eventually develop caustics:

Caustics in wavefronts

Curvelet flow approximation: high overlap at caustic point

Front on model caustic: $x = -\frac{1}{3}s^3$, $y = \frac{1}{2}s^2$

$$f(x) = \int e^{ix \cdot \xi - i\Phi(\xi)} a(\xi) d\xi$$

$$\Phi(\xi) = \frac{1}{6} \, \xi_1 \left(\frac{\xi_2}{\xi_1}\right)^3 \qquad s = \frac{\xi_2}{\xi_1}$$

Caustic behavior: $d^2 \Phi = 0$ at $\varepsilon_2 = 0$

Front on model caustic: $x = -\frac{1}{3}s^3$, $y = \frac{1}{2}s^2$

$$f(x) = \int e^{ix\cdot\xi - i\Phi(\xi)} a(\xi) d\xi$$

$$\Phi(\xi) = \frac{1}{6} \, \xi_1 \Big(\frac{\xi_2}{\xi_1}\Big)^3 \qquad s = \frac{\xi_2}{\xi_1}$$

Caustic behavior: $d^2\Phi = 0$ at $\xi_2 = 0$

Phase $\Phi(\xi)$ linearizes on larger sectors:

Linearization condition: $d^2\Phi(\xi)(\Delta\xi)^2 \leq 1$

• Near $\xi_2 = 0$, cubic:

$$\Delta \xi = 2^{2k/3}$$

• Near $\xi_2 = \xi_1$, parabolic:

$$\Delta \xi = 2^{k/2}$$

Parabolic Scaling

Frequency sectors: Spatial decomposition:

Interpolated Cubic/Parabolic Scaling

Frequency sectors:

Spatial decomposition:

Caustic

$$\hat{f}(\xi) = \exp(i\Phi(\xi))$$

f(x)

Cubic/Parabolic decomposition of caustic:

Parabolic decomposition of caustic:

Folding Fourier integral operator

Projection $\Pi_X : \Lambda \to T^*(X)$ has folding singularity:

Example of Folding FIO

Restrict solution to wave equation to convex obstacle:

Model Folding FIO

Convolution with line measure on cubic:

$$Tf(x_1, x_2) = \int f(x_1 - \frac{1}{3}t^3, x_2 - t) dt$$

 $\widehat{Tf}(\xi) = \xi_1^{-\frac{1}{3}} Ai(\xi_1^{-\frac{1}{3}}\xi_2) \widehat{f}(\xi)$

General folding FIO kernel:

$$K(x,y) = \int e^{i\varphi_1(x,\xi)} a(x,\xi) Ai(\xi_1^{-\frac{1}{3}} \xi_2) \overline{b}(y,\xi) e^{-i\varphi_2(y,\xi)} d\xi$$

Model Folding FIO

Convolution with line measure on cubic:

$$Tf(x_1, x_2) = \int f(x_1 - \frac{1}{3}t^3, x_2 - t) dt$$

 $\widehat{Tf}(\xi) = \xi_1^{-\frac{1}{3}} Ai(\xi_1^{-\frac{1}{3}}\xi_2) \widehat{f}(\xi)$

General folding FIO kernel:

$$\mathcal{K}(x,y) = \int \mathrm{e}^{i arphi_1(x,\xi)} \, \mathsf{a}(x,\xi) \, \mathsf{A}i(\xi_1^{-rac{1}{3}} \xi_2) \; \overline{b}(y,\xi) \, \mathrm{e}^{-i arphi_2(y,\xi)} \, \mathsf{d} \xi$$

Oscillations $exp(\pm i\frac{2}{3}\xi_1^{-1/2}\overline{\xi_2^{3/2}})$ of $Ai(\xi_1^{-1/3}\xi_2)$ linearize on smaller sectors:

Linearization condition:
$$d^2 \left[\xi_1^{-1/2} \xi_2^{3/2} \right] (\Delta \xi)^2 \le 1$$

• Near $\xi_2 = 0$, sub-cubic:

$$\Delta \xi = 2^{k/3}$$

• Near $\xi_2 = \xi_1$, parabolic:

$$\Delta \xi = 2^{k/2}$$

$$\mathit{Ai}(\xi_1^{-1/3}\xi_2)$$

$$x_2 = \frac{1}{3}x_1^3$$

Cubic/Parabolic decomposition of cubic:

Fold ← Caustic duality:

