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Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Second Dyadic Decomposition

Frequency sectors: 2% < |¢] < 21 Z(w,€) <27K/2
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Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Curvelets: ¢ (y) = 2734,k (y — x)

Frequency support: Spatial support:
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Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Curvelets are “coherent” wave-packets

Cubic Scaling for C



Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Linearization of phase functions

Wi, (X) = / X5 (6)de
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Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Linearization of phase functions

Wi, (X) = / X5 (6)de

@ On second dyadic sector: ¢(t,x,§) = yi(X) - ¢

Wepr (X) = @ (yi(X))
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Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Linearization of phase functions

Wi, (X) = / X5 (6)de

@ On second dyadic sector: ¢(t,x,§) = yi(X) - ¢

Wepr (X) = @ (yi(X))

@ Second dyadic decomposition of frequency space:

Largest sectors on which standard phase functions
well-approximated by linear phase functions.
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Parabolic Scaling and Curvelets The Second Dt 2composition
Wave-Evolution of Curvelets

Smith (1998)

Use curvelets to construct wave evolution

First approximation to wave flow:
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Parabolic Scaling and Curvelets The Second Dyadic Decomposition
Wave-Evolution of Curvelets

Candés-Donoho (2003)

Optimal approximation to images with jump along C? curves
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Caustics
Beyond Parabolic Scaling Folds

Caustics in wavefronts

Generic wavefronts eventually develop caustics:

Hart F. Smith Cubic Scaling for Caustics gential Reflections



Caustics
Beyond Parabolic Scaling Folds

Caustics in wavefronts

Curvelet flow approximation: high overlap at caustic point
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Caustics
Beyond Parabolic Scaling Folds

Front on model caustic: x = —3s3,y = 152

f(x) = [ &m0 a(e)d
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Caustics
Beyond Parabolic Scaling Folds

Front on model caustic: x = —3s3,y = 152

f(x) = [ &m0 a(e)d

_&

o -ta(Z) -

&1

Caustic behavior: d?¢ =0 at & =0
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Caustics
Beyond Parabolic Scaling Folds

Phase (&) linearizes on larger sectors:

Linearization condition: d?®(¢)(A¢)? < 1

@ Near & = 0, cubic:

Aé— — 22k/3

@ Near & = &1, parabolic:

Ag =24/
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Caustics
Beyond Parabolic Scaling

Parabolic Scaling

Folds

Frequency sectors: Spatial decomposition:
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Caustics
Beyond Parabolic Scaling

Folds

Interpolated Cubic/Parabolic Scaling

Frequency sectors: Spatial decomposition:

amd
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Caustics
Beyond Parabolic Scaling

Caustic

f(€) = exp(i®(€)) f(x)
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Caustics

Beyond Parabolic Scaling

Cubic/Parabolic decomposition of caustic:




Caustics
Beyond Parabolic Scaling Folds

Parabolic decomposition of caustic
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Caustics
Beyond Parabolic Scaling Folds

Folding Fourier integral operator

Projection MMy : A — T*(X) has folding singularity:

Hart F. Smith Cubic Scaling for Caustics and Tangential Reflections



Caustics
Beyond Parabolic Scaling Folds

Example of Folding FIO

Restrict solution to wave equation to convex obstacle:
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Caustics
Beyond Parabolic Scaling Folds

Model Folding FIO

@ Convolution with line measure on cubic:

Tf(Xl,Xz) = /f(Xl — %tS,Xz — t)dt

THE) = &7 AiE &) ()
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Caustics
Beyond Parabolic Scaling Folds

Model Folding FIO

@ Convolution with line measure on cubic:

Tf(Xl,Xz) = /f(Xl — %tS,Xz — t)dt
THO = & AiG &) T

@ General folding FIO kernel:

W%WZ/ém a(x, €) Ai(€; 2&2) By, €) e %209 de
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Caustics
Beyond Parabolic Scaling Folds

Oscillations exp(+i2¢; 2¢)/%) of Ai(e,'°¢,)

linearize on smaller sectors:

Linearization condition: d? {51_1/253/2} (AP <1

@ Near &, = 0, sub-cubic:

AL =2%3

@ Near & = &1, parabolic:

AE — 2k/2
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Caus

Beyond Parabolic Scaling Folds

A, 2e) Xz = 1x3

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Hart F. Smith



Beyond Parabolic Scaling Folds

Cubic/Parabolic decomposition of cubic:
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Caustics
Beyond Parabolic Scaling Folds

Fold < Caustic duality:
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