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Eigenfunctions and Spectral Clusters
Squarefunction estimates

Compact manifolds without boundary
Compact manifolds with boundary

(M, g) = compact 2-d Riemannian manifold

∆g = Laplacian ( Dirichlet or Neumann if ∂M 6= ∅ )
Eigenbasis: −∆gφj = −λ2

j φj ( λj = frequency )

Spectral Cluster, frequency λ :

f =
∑

λj∈[λ,λ+1]

cj φj

Goal: find sharp powers δ(p) such that

‖f‖Lp(M)

‖f‖L2(M)

. λδ(p) ( p ≥ 2 )
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Compact manifolds without boundary
Compact manifolds with boundary

Saturating examples on (M,g) = 2-sphere S2

Example 1: f = highest weight spherical harmonic.

|f | ≈
(
1 + λ

1
2 sin(φ)

)−N

‖f‖Lp

‖f‖L2
& λ

1
2 ( 1

2−
1
p )

Lower bound (critical region)

δ(p) ≥ 1
2(1

2 −
1
p )
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Compact manifolds without boundary
Compact manifolds with boundary

Saturating examples on (M,g) = 2-sphere S2

Example 2: f = zonal spherical harmonic, rotation invariant.

|f | ≈
(
1 + λ cos(φ)

)−1/2

‖f‖Lp

‖f‖L2
& λ

1
2−

2
p = λ

2( 1
2−

1
p )− 1

2

Lower bound (sub-critical region)

δ(p) ≥ 2(1
2 −

1
p )− 1

2
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Compact manifolds without boundary
Compact manifolds with boundary

Theorem: Sogge [1988]

For compact n-dimensional manifold without boundary

δ(p) =

{
n−1

2 ( 1
2 −

1
p ) , 2 ≤ p ≤ 2(n+1)

n−1

n( 1
2 −

1
p )− 1

2 ,
2(n+1)

n−1 ≤ p ≤ ∞

n = 2

1/2

1/6

0

0 1/6 1/2

subcritical

critical
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Compact manifolds without boundary
Compact manifolds with boundary

Grieser [1992]

Sogge’s spectral cluster estimates fail on D = { |x | ≤ 1 } ⊆ R2

Example: f (x) = einθ Jn(cor) , Jn(co) = 0 .

f (x) concentrated in dist(x , ∂D) . n−
2
3 }

Vol(“support”(f )) ≈ 1× n−
2
3 ⇒ ‖f‖Lp

‖f‖L2
& n

2
3 ( 1

2−
1
p )

Lower bound on manifolds with boundary

δ(p) ≥ 2
3( 1

2 −
1
p )
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Compact manifolds without boundary
Compact manifolds with boundary

Multiple reflections / Gliding rays!

Nondispersive region: angular spread ≈ λ−
1
3

physical spread ≈ λ−
2
3

Smith-Sogge [1995]
∂M strictly concave ⇒ spectral cluster estimates hold
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Compact manifolds without boundary
Compact manifolds with boundary

Smith-Sogge [2007]: M=2d manifold with boundary

Spectral cluster estimates hold with

δ(p) =

{
2
3( 1

2 −
1
p ) , 6 ≤ p ≤ 8

2( 1
2 −

1
p )− 1

2 , 8 ≤ p ≤ ∞

0

0

1/4

1/2

1/8 1/2
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Key step in proof: Eliminate the boundary

Geodesic normal coordinates along ∂M : M = {x2 ≥ 0}

g = d2
x2

+ a11(x1, x2) d2
x1
, smooth on x2 ≥ 0

Extend g across ∂M to be even in x2

g̃ = d2
x2

+ a11(x1, |x2|) d2
x1

Odd extension of Dirichlet eigenfunction: x2
|x2| φj(x1, |x2|)

is eigenfunction for ∆g̃

Even extension of Neumann eigenfunction: φj(x1, |x2|)
is eigenfunction for ∆g̃
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Compact manifolds with boundary

No more boundary / reflected geodesics:

Disc: r ≤ 1

g = d2
r +

1
r2 d2

θ

Normal coordinates: x2 = 1− r

g̃ = d2
x2

+ 1
(1−|x2|)2 d2

x1

But metric is Lipschitz.
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Compact manifolds without boundary
Compact manifolds with boundary

Metric g̃ is of special Lipschitz type:

d2
x g̃ ≈ δ(x2) is integrable along non-tangential geodesics.

!

 "

dx2

dt
≈ θ on γ

∫
d2

x g̃(γ(t)) dt ≈ θ−1
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Compact manifolds with boundary

Dispersive type estimates hold for �g if d2g ∈ L1
t L∞x

Consider time dependent metric g(t , x) on M

∂2
t u(t , x)−∆gu(t , x) = 0

u(0, x) = f (x) , ∂tu(0, x) = g(x)

Tataru [2002] : Strichartz estimates

If ‖∇2
t ,x g‖L1

t L∞x
≤ 1, then

‖u‖Lp
t Lq

x ([−1,1]×M) . ‖f‖Hs + ‖g‖Hs−1

for same p,q, s as smooth manifolds, Euclidean space.

Hart F. Smith Lp Bounds for Spectral Clusters
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Compact manifolds without boundary
Compact manifolds with boundary

In our case
∫

d2g ≈ θ−1

Rescaled metric g(θt , θx) ∈ L1
t L∞x norm 1:

Tataru [2002] : Strichartz estimates

If ‖∇2
t ,x g‖L1

t L∞x
≤ θ−1, then

‖u‖Lp
t Lq

x ([−θ,θ]×M) . ‖f‖Hs + ‖g‖Hs−1

for same p,q, s as smooth manifolds, Euclidean space.

Hart F. Smith Lp Bounds for Spectral Clusters



Eigenfunctions and Spectral Clusters
Squarefunction estimates

Angular localization = subcritical gain
Higer dimensions

Squarefunction estimates

‖ cos( t
√
−∆g )f (x)‖Lp

x L2
t (M×[−1,1]) . ‖〈D〉

δ(p)f‖L2(M) , p ≥ 6

Squarefunction estimates⇒ spectral cluster bounds:

For spectral cluster f : cos( t
√
−∆g )f (x) ≈ cos(tλ)f (x)

‖f‖Lp(M) . ‖ cos( t
√
−∆g )f (x)‖Lp

x L2
t (M×[−1,1]) . λ

δ(p) ‖f‖L2(M)

[Mockenhaupt-Seeger-Sogge (1993)] [S., d2g ∈ L1
t L∞x (2006)]
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Angular localization = subcritical gain
Higer dimensions

Phase-space localized spectral clusters:

If f̂ (ξ1, ξ2) is localized to ξ2/ξ1 ∈ [θ,2θ], then we can prove
“good” bounds on ‖f‖Lp over slabs S of size θ in x1 direction.

 !

 "  # !

Problem: add up over θ−1 slabs⇒ lose θ−1/p for ‖f‖Lp(M).
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Angular localization = subcritical gain
Higer dimensions

For subcritical p > 6, gain from small angle localization

If f̂θ is localized to a cone of angle θ, then

‖fθ‖Lp(S) . θ
1
2−

3
pλδ(p)‖fθ‖L2(M)

Combined gain · loss for fθ

‖fθ‖Lp(M) . θ
1
2−

4
pλδ(p)‖fθ‖L2(M)

Sum over dyadic decomp in θ ≤ 1 yields

‖f‖Lp(M) . λ
δ(p)‖f‖L2(M) , p ≥ 8
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Angular localization = subcritical gain
Higer dimensions

Gliding modes: θ = λ−1/3

On slab S size λ−1/3 in x1:

‖f‖L6(S) ≤ λ1/6‖f‖L2(M)

Sum over slabs:

‖f‖L6(M) ≤ λ1/6+1/18‖f‖L2(M)

 !!2/3

 " # !!1/3
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Angular localization = subcritical gain
Higer dimensions

Gliding modes: θ = λ−1/3

On slab S size λ−1/3 in x1:

‖f‖L8(S) ≤ λ1/4λ−1/24‖f‖L2(M)

Sum over slabs:

‖f‖L8(M) ≤ λ1/4‖f‖L2(M)

 !!2/3

 " # !!1/3
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Angular localization = subcritical gain
Higer dimensions

Higher dimensional results: n ≥ 3

Smith-Sogge [2007]: M = n dimensional manifold with
boundary
No-loss square function / spectral cluster estimates hold with

δ(p) = n( 1
2 −

1
p )− 1

2

{
5 ≤ p ≤ ∞ , n = 3
4 ≤ p ≤ ∞ , n ≥ 4

Result non-optimal: ignores dispersion tangent to ∂M.

Hart F. Smith Lp Bounds for Spectral Clusters
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