Lp Bounds for Spectral Clusters on Compact Manifolds with Boundary

Hart F. Smith

Department of Mathematics University of Washington, Seattle

Carolina Meeting on Harmonic Analysis and PDE

Hart F. Smith Lp Bounds for Spectral Clusters

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

(M, g) = compact 2-d Riemannian manifold

• $\Delta_g = \text{Laplacian}$ (Dirichlet or Neumann if $\partial M \neq \emptyset$) Eigenbasis: $-\Delta_g \phi_j = -\lambda_j^2 \phi_j$ ($\lambda_j = \text{frequency}$)

• Spectral Cluster, frequency λ :

$$f = \sum_{\lambda_j \in [\lambda, \lambda+1]} c_j \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$\frac{\|f\|_{L^p(M)}}{\|f\|_{L^2(M)}} \lesssim \lambda^{\delta(p)} \qquad (p \ge 2)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

(M, g) = compact 2-d Riemannian manifold

- $\Delta_g = \text{Laplacian}$ (Dirichlet or Neumann if $\partial M \neq \emptyset$) Eigenbasis: $-\Delta_g \phi_j = -\lambda_j^2 \phi_j$ ($\lambda_j = \text{frequency}$)
- Spectral Cluster, frequency λ :

$$f = \sum_{\lambda_j \in [\lambda, \lambda+1]} c_j \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$\frac{\|f\|_{L^p(M)}}{\|f\|_{L^2(M)}} \lesssim \lambda^{\delta(p)} \qquad (p \ge 2)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

(M, g) = compact 2-d Riemannian manifold

- $\Delta_g = \text{Laplacian}$ (Dirichlet or Neumann if $\partial M \neq \emptyset$) Eigenbasis: $-\Delta_g \phi_j = -\lambda_j^2 \phi_j$ ($\lambda_j = \text{frequency}$)
- Spectral Cluster, frequency λ :

$$f = \sum_{\lambda_j \in [\lambda, \lambda+1]} \, \mathbf{c}_j \, \phi_j$$

• Goal: find sharp powers $\delta(p)$ such that

$$rac{\|f\|_{L^p(M)}}{\|f\|_{L^2(M)}}\lesssim\lambda^{\delta(p)}$$
 ($p\geq 2$)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example 1: *f* = highest weight spherical harmonic.

$$|f| \approx \left(1 + \lambda^{\frac{1}{2}}\sin(\phi)\right)^{-N}$$

$$\frac{\|f\|_{L^p}}{\|f\|_{L^2}} \gtrsim \lambda^{\frac{1}{2}(\frac{1}{2} - \frac{1}{p})}$$

Lower bound (critical region)

$$\delta(p) \geq \frac{1}{2}(\frac{1}{2} - \frac{1}{p})$$

Hart F. Smith Lp Bounds for Spectral Clusters

ヘロト 人間 とくほとくほとう

э

Example 1: *f* = highest weight spherical harmonic.

$$|f| \approx \left(1 + \lambda^{\frac{1}{2}}\sin(\phi)\right)^{-N}$$

$$\frac{\|f\|_{L^p}}{\|f\|_{L^2}} \gtrsim \lambda^{\frac{1}{2}(\frac{1}{2} - \frac{1}{p})}$$

Lower bound (critical region)

$$\delta(\boldsymbol{p}) \geq \frac{1}{2}(\frac{1}{2} - \frac{1}{p})$$

ヘロン 人間 とくほ とくほ とう

Example 2: *f* = zonal spherical harmonic, rotation invariant.

$$|f| \approx (1 + \lambda \cos(\phi))^{-1/2}$$

$$\frac{\|f\|_{L^p}}{\|f\|_{L^2}} \gtrsim \lambda^{\frac{1}{2} - \frac{2}{p}} = \lambda^{2(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}}$$

Lower bound (sub-critical region)

$$\delta(p) \ge 2(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Example 2: *f* = zonal spherical harmonic, rotation invariant.

$$|f| \approx (1 + \lambda \cos(\phi))^{-1/2}$$

$$\frac{\|f\|_{L^p}}{\|f\|_{L^2}} \gtrsim \lambda^{\frac{1}{2} - \frac{2}{p}} = \lambda^{2(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}}$$

Lower bound (sub-critical region)

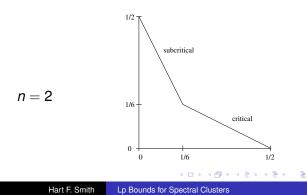
$$\delta(\boldsymbol{p}) \geq 2(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}$$

ヘロト ヘアト ヘビト ヘビト

Theorem: Sogge [1988]

For compact n-dimensional manifold without boundary

$$\delta(p) = \begin{cases} \frac{n-1}{2} (\frac{1}{2} - \frac{1}{p}), & 2 \le p \le \frac{2(n+1)}{n-1} \\ n(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}, & \frac{2(n+1)}{n-1} \le p \le \infty \end{cases}$$



Grieser [1992]

Sogge's spectral cluster estimates fail on $D = \{ |x| \le 1 \} \subseteq \mathbb{R}^2$

Example:
$$f(x) = e^{in\theta} J_n(c_o r)$$
, $J_n(c_o) = 0$.
 $f(x)$ concentrated in dist $(x, \partial D) \lesssim n^{-\frac{2}{3}}$ }

Vol("support"(*f*))
$$\approx 1 \times n^{-\frac{2}{3}} \Rightarrow \frac{\|f\|_{L^{p}}}{\|f\|_{L^{2}}} \gtrsim n^{\frac{2}{3}(\frac{1}{2} - \frac{1}{p})}$$

Lower bound on manifolds with boundary

$$\delta(p) \geq \frac{2}{3}(\frac{1}{2} - \frac{1}{p})$$

ヘロト 人間 ト ヘヨト ヘヨト

э

Grieser [1992]

Sogge's spectral cluster estimates fail on $D = \{ |x| \le 1 \} \subseteq \mathbb{R}^2$

Example:
$$f(x) = e^{in\theta} J_n(c_o r)$$
, $J_n(c_o) = 0$.
 $f(x)$ concentrated in dist $(x, \partial D) \lesssim n^{-\frac{2}{3}}$ }

Vol("support"(*f*))
$$\approx 1 \times n^{-\frac{2}{3}} \Rightarrow \frac{\|f\|_{L^{p}}}{\|f\|_{L^{2}}} \gtrsim n^{\frac{2}{3}(\frac{1}{2} - \frac{1}{p})}$$

Lower bound on manifolds with boundary

$$\delta(p) \geq \frac{2}{3}(\frac{1}{2} - \frac{1}{p})$$

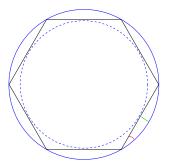
= 900

ヘロン 人間 とくほ とくほ とう

Compact manifolds without boundary Compact manifolds with boundary

Multiple reflections / Gliding rays!

Nondispersive region: angular spread $\approx \lambda^{-\frac{1}{3}}$ physical spread $\approx \lambda^{-\frac{2}{3}}$



Smith-Sogge [1995]

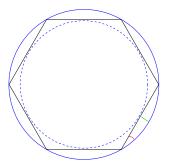
 ∂M strictly concave \Rightarrow spectral cluster estimates hold

Hart F. Smith Lp Bounds for Spectral Clusters

Compact manifolds without boundary Compact manifolds with boundary

Multiple reflections / Gliding rays!

Nondispersive region: angular spread $\approx \lambda^{-\frac{1}{3}}$ physical spread $\approx \lambda^{-\frac{2}{3}}$



Smith-Sogge [1995]

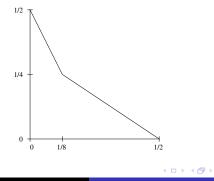
 ∂M strictly concave \Rightarrow spectral cluster estimates hold

Hart F. Smith Lp Bounds for Spectral Clusters

Smith-Sogge [2007]: *M*=2d manifold with boundary

Spectral cluster estimates hold with

$$\delta(p) = \begin{cases} \frac{2}{3}(\frac{1}{2} - \frac{1}{p}), & 6 \le p \le 8\\ 2(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}, & 8 \le p \le \infty \end{cases}$$



★ Ξ → ★ Ξ →

Key step in proof: Eliminate the boundary

Geodesic normal coordinates along ∂M : $M = \{x_2 \ge 0\}$

$$g = d_{x_2}^2 + a_{11}(x_1, x_2) d_{x_1}^2$$
, smooth on $x_2 \ge 0$

Extend g across ∂M to be even in x_2

$$\tilde{g} = d_{x_2}^2 + a_{11}(x_1, |x_2|) d_{x_1}^2$$

- Odd extension of Dirichlet eigenfunction: ^{x₂}/_{|x₂|} φ_j(x₁, |x₂|) is eigenfunction for Δ_ğ
- Even extension of Neumann eigenfunction: φ_j(x₁, |x₂|) is eigenfunction for Δ_ğ

イロト 不得 とくほ とくほ とうほ

Key step in proof: Eliminate the boundary

Geodesic normal coordinates along ∂M : $M = \{x_2 \ge 0\}$

$$g = d_{x_2}^2 + a_{11}(x_1, x_2) d_{x_1}^2$$
, smooth on $x_2 \ge 0$

Extend g across ∂M to be even in x_2

$$\tilde{g} = d_{x_2}^2 + a_{11}(x_1, |x_2|) d_{x_1}^2$$

- Odd extension of Dirichlet eigenfunction: ^{x₂}/_{|x₂|} φ_j(x₁, |x₂|) is eigenfunction for Δ_ğ
- Even extension of Neumann eigenfunction: φ_j(x₁, |x₂|) is eigenfunction for Δ_ğ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Eigenfunctions and Spectral Clusters Squarefunction estimates Compact manifolds without boundary Compact manifolds with boundary

No more boundary / reflected geodesics:

Disc: *r* ≤ 1

$$g = d_r^2 + \frac{1}{r^2} d_\theta^2$$

Normal coordinates: $x_2 = 1 - r$

$$\tilde{g} = d_{x_2}^2 + \frac{1}{(1-|x_2|)^2} d_{x_1}^2$$



イロト イポト イヨト イヨト

э

But metric is Lipschitz.

Eigenfunctions and Spectral Clusters Squarefunction estimates Compact manifolds without boundary Compact manifolds with boundary

No more boundary / reflected geodesics:

Disc: *r* ≤ 1

$$g = d_r^2 + \frac{1}{r^2} d_\theta^2$$

Normal coordinates: $x_2 = 1 - r$

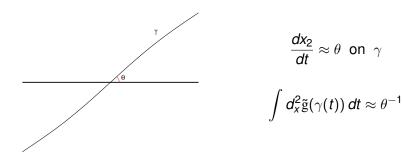
$$\tilde{g} = d_{x_2}^2 + \frac{1}{(1-|x_2|)^2} d_{x_1}^2$$

イロン 不得 とくほ とくほとう

But metric is Lipschitz.

Metric \tilde{g} is of special Lipschitz type:

 $d_x^2 \tilde{g} \approx \delta(x_2)$ is integrable along non-tangential geodesics.



ヘロト ヘアト ヘビト ヘビト

Dispersive type estimates hold for \Box_g if $d^2g \in L^1_t L^\infty_x$

Consider time dependent metric g(t, x) on M

$$\partial_t^2 u(t,x) - \Delta_g u(t,x) = 0$$

$$u(0,x) = f(x), \quad \partial_t u(0,x) = g(x)$$

Tataru [2002] : Strichartz estimates

If $\|\nabla_{t,x}^2 g\|_{L^1_t L^\infty_x} \leq 1$, then

$$\|u\|_{L^p_t L^q_x([-1,1] imes M)} \lesssim \|f\|_{H^s} + \|g\|_{H^{s-1}}$$

for same p, q, s as smooth manifolds, Euclidean space.

ヘロン 人間 とくほ とくほ とう

э

Eigenfunctions and Spectral Clusters Squarefunction estimates Compact manifolds without boundary Compact manifolds with boundary

Rescaled metric $g(\theta t, \theta x) \in L^1_t L^\infty_x$ norm 1:

Tataru [2002] : Strichartz estimates

If $\|\nabla_{t,x}^2 g\|_{L^1_t L^\infty_x} \le \theta^{-1}$, then

In our case $\int d^2g \approx \theta^{-1}$

$$\|u\|_{L^p_t L^q_x([- heta, heta] imes M)} \lesssim \|f\|_{H^s} + \|g\|_{H^{s-1}}$$

for same p, q, s as smooth manifolds, Euclidean space.

イロン 不得 とくほ とくほ とうほ

Squarefunction estimates

$$\|\cos(t\sqrt{-\Delta_{\mathrm{g}}})f(x)\|_{L^p_x L^2_t(M\times [-1,1])} \lesssim \|\langle \mathcal{D}\rangle^{\delta(\mathcal{P})}f\|_{L^2(\mathcal{M})}\,,\quad \mathcal{P}\geq 6$$

Squarefunction estimates \Rightarrow spectral cluster bounds:

For spectral cluster f: $\cos(t\sqrt{-\Delta_g})f(x) \approx \cos(t\lambda)f(x)$

 $\|f\|_{L^{p}(M)} \lesssim \|\cos(t\sqrt{-\Delta_{g}})f(x)\|_{L^{p}_{x}L^{2}_{t}(M imes [-1,1])} \lesssim \lambda^{\delta(p)} \|f\|_{L^{2}(M)}$

[Mockenhaupt-Seeger-Sogge (1993)] ~~ [S., $d^2 extrm{g}\in L^1_tL^\infty_x$ (2006)]

イロン 不良 とくほう 不良 とうしょう

Squarefunction estimates

$$\|\cos(t\sqrt{-\Delta_{\mathrm{g}}})f(x)\|_{L^p_xL^2_t(M\times [-1,1])}\lesssim \|\langle \mathcal{D}\rangle^{\delta(\mathcal{p})}f\|_{L^2(\mathcal{M})}\,,\quad \mathcal{p}\geq 6$$

Squarefunction estimates \Rightarrow spectral cluster bounds:

For spectral cluster f : $\cos(t\sqrt{-\Delta_g})f(x) \approx \cos(t\lambda)f(x)$

$$\|f\|_{L^p(M)} \lesssim \|\cos(t\sqrt{-\Delta_{\mathrm{g}}})f(x)\|_{L^p_x L^2_t(M\times [-1,1])} \lesssim \lambda^{\delta(p)} \, \|f\|_{L^2(M)}$$

[Mockenhaupt-Seeger-Sogge (1993)] ~~ [S., $d^2 ext{g} \in L^1_t L^\infty_x$ (2006)]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Squarefunction estimates

$$\|\cos(t\sqrt{-\Delta_{\mathrm{g}}})f(x)\|_{L^p_xL^2_t(M\times [-1,1])}\lesssim \|\langle D\rangle^{\delta(p)}f\|_{L^2(M)}\,,\quad p\geq 6$$

Squarefunction estimates \Rightarrow spectral cluster bounds:

For spectral cluster f : $\cos(t\sqrt{-\Delta_g})f(x) \approx \cos(t\lambda)f(x)$

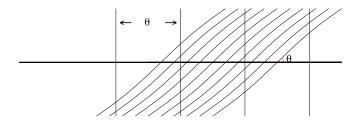
$$\|f\|_{L^p(\mathcal{M})}\lesssim \|\cos(t\sqrt{-\Delta_{\mathrm{g}}})f(x)\|_{L^p_x L^2_t(\mathcal{M} imes [-1,1])}\lesssim \lambda^{\delta(
ho)}\,\|f\|_{L^2(\mathcal{M})}$$

[Mockenhaupt-Seeger-Sogge (1993)] [S., $d^2g \in L^1_t L^\infty_x$ (2006)]

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → り Q (?)

Phase-space localized spectral clusters:

If $\hat{f}(\xi_1, \xi_2)$ is localized to $\xi_2/\xi_1 \in [\theta, 2\theta]$, then we can prove "good" bounds on $||f||_{L^p}$ over slabs *S* of size θ in x_1 direction.

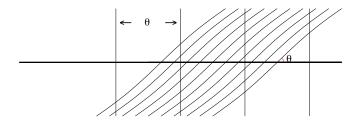


Problem: add up over θ^{-1} slabs \Rightarrow lose $\theta^{-1/p}$ for $||f||_{L^p(M)}$.

ヘロト ヘアト ヘビト ヘビト

Phase-space localized spectral clusters:

If $\hat{f}(\xi_1, \xi_2)$ is localized to $\xi_2/\xi_1 \in [\theta, 2\theta]$, then we can prove "good" bounds on $||f||_{L^p}$ over slabs *S* of size θ in x_1 direction.



Problem: add up over θ^{-1} slabs \Rightarrow lose $\theta^{-1/\rho}$ for $||f||_{L^{\rho}(M)}$.

ヘロト 人間 ト ヘヨト ヘヨト

For subcritical p > 6, gain from small angle localization

• If \hat{f}_{θ} is localized to a cone of angle θ , then

$$\|f_{\theta}\|_{L^{p}(S)} \lesssim \theta^{\frac{1}{2}-\frac{3}{p}} \lambda^{\delta(p)} \|f_{\theta}\|_{L^{2}(M)}$$

• Combined gain \cdot loss for f_{θ}

$$\|f_{\theta}\|_{L^{p}(M)} \lesssim \theta^{\frac{1}{2} - \frac{4}{p}} \lambda^{\delta(p)} \|f_{\theta}\|_{L^{2}(M)}$$

• Sum over dyadic decomp in $\theta \leq 1$ yields

$$\|f\|_{L^p(M)}\lesssim \lambda^{\delta(\mathcal{P})}\|f\|_{L^2(M)}\,,\quad \mathcal{P}\geq 8$$

・ロト ・同ト ・ヨト ・ヨト

For subcritical p > 6, gain from small angle localization

• If \hat{f}_{θ} is localized to a cone of angle θ , then

$$\|f_{\theta}\|_{L^{p}(S)} \lesssim \theta^{\frac{1}{2}-\frac{3}{p}} \lambda^{\delta(p)} \|f_{\theta}\|_{L^{2}(M)}$$

• Combined gain \cdot loss for f_{θ}

$$\|f_{\theta}\|_{L^{p}(M)} \lesssim \theta^{\frac{1}{2} - \frac{4}{p}} \lambda^{\delta(p)} \|f_{\theta}\|_{L^{2}(M)}$$

• Sum over dyadic decomp in $\theta \leq 1$ yields

 $\|f\|_{L^p(M)}\lesssim \lambda^{\delta(\mathcal{P})}\|f\|_{L^2(M)}\,,\quad \mathcal{P}\geq 8$

ヘロン 人間 とくほど 人間と

For subcritical p > 6, gain from small angle localization

• If \hat{f}_{θ} is localized to a cone of angle θ , then

$$\|f_{\theta}\|_{L^{p}(S)} \lesssim \theta^{\frac{1}{2}-\frac{3}{p}} \lambda^{\delta(p)} \|f_{\theta}\|_{L^{2}(M)}$$

• Combined gain \cdot loss for f_{θ}

$$\|f_{\theta}\|_{L^{p}(M)} \lesssim \theta^{\frac{1}{2}-\frac{4}{p}} \lambda^{\delta(p)} \|f_{\theta}\|_{L^{2}(M)}$$

• Sum over dyadic decomp in $\theta \leq 1$ yields

$$\|f\|_{L^p(M)}\lesssim \lambda^{\delta(\mathcal{p})}\|f\|_{L^2(M)}\,,\quad \mathcal{p}\geq 8$$

ヘロト 人間 とくほとくほとう

Eigenfunctions and Spectral Clusters Squarefunction estimates Angular localization = subcritical gain Higer dimensions

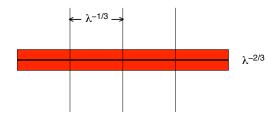
Gliding modes: $\theta = \lambda^{-1/3}$

• On slab *S* size
$$\lambda^{-1/3}$$
 in x_1 :

$$\|f\|_{L^6(S)} \le \lambda^{1/6} \|f\|_{L^2(M)}$$

Sum over slabs:

$$\|f\|_{L^6(M)} \le \lambda^{1/6+1/18} \|f\|_{L^2(M)}$$



Hart F. Smith Lp Bounds for Spectral Clusters

ъ

Eigenfunctions and Spectral Clusters Squarefunction estimates Angular localization = subcritical gain Higer dimensions

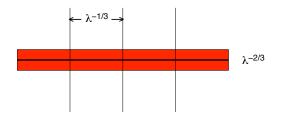
Gliding modes: $\theta = \lambda^{-1/3}$

• On slab *S* size
$$\lambda^{-1/3}$$
 in x_1 :

$$\|f\|_{L^{8}(S)} \leq \lambda^{1/4} \lambda^{-1/24} \|f\|_{L^{2}(M)}$$

Sum over slabs:

 $\|f\|_{L^8(M)} \le \lambda^{1/4} \|f\|_{L^2(M)}$



ъ

Angular localization = subcritical gain Higer dimensions

Higher dimensional results: $n \ge 3$

Smith-Sogge [2007]: M = n dimensional manifold with boundary

No-loss square function / spectral cluster estimates hold with

$$\delta(p) = n(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2} \qquad \begin{cases} 5 \le p \le \infty, & n = 3\\ 4 \le p \le \infty, & n \ge 4 \end{cases}$$

Result non-optimal: ignores dispersion tangent to ∂M .

ヘロト ヘアト ヘビト ヘビト