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Curvelets and the Second Dyadic Decomposition

Curvelets

A curvelet frame {ϕγ} is a wave packet frame on L2(R2)
based on second dyadic decomposition.

f (x) =
∑
γ

cγ ϕγ(x)

cγ =

∫
f (x)ϕγ(x) dx
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Dyadic Decomposition

Frequency shells: 2k < |ξ| < 2k+1
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Second Dyadic Decomposition

Angular Sectors: ∠(ω, ξ) ≤ 2−k/2
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Second Dyadic Decomposition

Parabolic scaling: ∆ξ2 ∼
√
ξ1
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Second Dyadic Decomposition

Associated partition of unity:

1 = ψ̂0(ξ)2 +
∞∑

k=0

2k/2∑
ω=1

ψ̂ω,k (ξ)2

supp(ψ̂ω,k ) ⊂
{
ξ : |ξ| ≈ 2k ,

∣∣ω − ξ
|ξ|
∣∣ . 2−k/2}

Second dyadic decomposition of f :

1 = ψ̂0(ξ)2 f̂ (ξ) +
∞∑

k=0

2k/2∑
ω=1

ψ̂ω,k (ξ)2 f̂ (ξ)
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Final step: expand ψ̂ω,k(ξ) f̂ (ξ) in Fourier series

If supp(g(ξ)) ⊂ L1 × L2 rectangle:

g(ξ) = (L1L2)−1/2
∑
p,q

cp,qe−i p ξ1−i q ξ2

cp,q = (L1L2)−1/2
∫

g(ξ)e i p ξ1+i q ξ2

Points (p,q) belong to dilated lattice:

p,q ∈ 2π
L1

Z× 2π
L2

Z
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ψ̂ω,k(ξ)f̂ (ξ) supported in rotated 2k × 2k/2 rectangle

 2k/2

 2k

 !^
",k(#)

Points (p,q) belong to rotated 2−k × 2−k/2 lattice Ξω,k
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Curvelets and the Second Dyadic Decomposition

Let (p,q) = x ∈ Ξω,k

cx ,ω,k = 2−3k/4
∫

e i〈x ,ξ〉ψ̂ω,k (ξ)f̂ (ξ) dξ

ψ̂ω,k (ξ) f̂ (ξ) = 2−3k/4
∑

x∈Ξω,k

cx ,ω,k e−i〈x ,ξ〉

Reconstruction is periodic, so localize:

ψ̂ω,k (ξ)2 f̂ (ξ) = 2−3k/4
∑

x∈Ξω,k

cx ,ω,k e−i〈x ,ξ〉ψ̂ω,k (ξ)
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Sum over ω then k to recover f

f̂ (ξ) =
∑

k

∑
ω

∑
x∈Ξω,k

cx ,ω,k 2−3k/4e−i〈x ,ξ〉ψ̂ω,k (ξ)

cx ,ω,k =

∫
2−3k/4e i〈x ,ξ〉ψ̂ω,k (ξ)f̂ (ξ) dξ

Take inverse Fourier transform:

f (y) =
∑

k

∑
ω

∑
x∈Ξω,k

cx ,ω,k 2−3k/4ψω,k (y − x)

cx ,ω,k =

∫
2−3k/4ψω,k (y − x) f (y) dy
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Curvelets: ϕγ(y) = 2−3k/4ψω,k(y − x) , γ = (x , ω, k)

Frequency support:

 2k/2

 2k

 !^
",k(#)

Spatial support:

 2!k/2

 2!k
 !",k(y!x)
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Plancherel identity

∑
x∈Ξω,k

|cx ,ω,k |2 =

∫
ψ̂ω,k (ξ)2 |̂f (ξ)|2 dξ

Sum over ω and k :∑
γ

|cγ |2 =

∫
|̂f (ξ)|2 dξ =

∫
|f (y)|2 dy

Frame, not basis: ψω,k (y − x) not orthogonal, but almost.
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Application to wave flow
Images with jumps along curves

Motivation for SDD: homogeneous phase functions

Consider Φ(ξ) smooth for ξ 6= 0, homogeneous degree 1:

Φ(sξ) = sΦ(ξ) , s > 0

Example: Φ(ξ) = |ξ|

Claim: on supp(ψ̂ω,k ), Φ(ξ) = ∇Φ(ω) · ξ + r(ξ) ,

where
|r(ξ)| . 1

|∇m
ω∇n

ω⊥r(ξ)| . 2−km− k
2 n
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Example: |ξ| = ω · ξ + r(ξ)

Solution to half-wave Cauchy problem:(
∂t + i

√
−∆y

)
u(t , y) = 0 , u(0, y) = ϕγ(y)

u(t , y) =

∫
e i〈y ,ξ〉−it |ξ| ϕ̂γ(ξ) dξ

=

∫
e i〈y−tω,ξ〉 [e−itr(ξ) ϕ̂γ(ξ)

]
dξ

≈ ϕγ(y − tω)

Initial data: u(0, y) =
∑

γ cγϕγ(y), then

u(t , y) ≈
∑
γ

ϕγ(y − tω)
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Application to wave flow
Images with jumps along curves

Evolution of waves

A wavefront consisting of a few curvelets:
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Application to wave flow
Images with jumps along curves

Evolution of waves

First approximation to wave flow:
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Application to wave flow
Images with jumps along curves

Córdoba-Fefferman Decomposition: 2k/2 × 2k/2 cubes

Alternative phase-space decomposition being explored to
compute wave propagators: (Demanét-Ying)
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Application to wave flow
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C. Fefferman [1973]

Decompose support function of unit disc:

 f(x)=1  f(x)=0
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C. Fefferman [1973]

Frequency sectors:

 f^(!)

 2k/2

 2k

Spatial decomposition:

 2!k/2

 2!k
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Application to wave flow
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Candés-Donoho (2003)

Image with sharp jump along smooth curve:

 f(x)=1  f(x)=0
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Application to wave flow
Images with jumps along curves

Candés-Donoho (2003)

2k/2 dominant terms in curvelet expansion at frequency 2k :

 f(x)=1  f(x)=0
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Candés-Donoho (2003)

Approximation rate is optimal:

Choose n largest coefficients cγ in f =
∑

γ cγϕγ

‖f − fn‖2L2 . n−2 log(n)3

No frame can do better for jumps along C2 curves.

Wavelet expansion: ‖f − fn‖2L2 . n−1
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Denoising Images with Curvelets
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