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Abstract

Kalikow proved that the [T, T−1] transformation is not isomorphic to a Bernoulli shift [3].
We show that the scenery factor of the [T, T−1] transformation is not isomorphic to a Bernoulli
shift. Moreover we show that it is not Kakutani equivalent to a Bernoulli shift.

1 Introduction

The [T, T−1] transformation is a random walk on a random scenery. It is defined as follows. Let

X = {1,−1}Z and Y = {red, blue}Z. Let σ be the left shift on X (σ(x)i = xi+1) and let T be the

left shift on Y . Let µ′ be (1/2,1/2) product measure on X and µ′′ be (1/2,1/2) product measure

on Y .

We define the transformation [T, T−1] : X × Y → X × Y by

[T, T−1](x, y) =

{
(σ(x), T (y)) if x0 = 1

(σ(x), T−1(y)) if x0 = −1.

Let F be the Borel σ-algebra and µ = µ′ × µ′′. Then the [T, T−1] transformation is the four-tuple

(X × Y, [T, T−1],F , µ).

The [T, T−1] transformation was introduced for its ergodic theoretic properties. It is easy to

show that this transformation is a K transformation [6]. For many years it was an open question to

determine whether the [T, T−1] transformation is isomorphic to a Bernoulli shift. Kalikow settled

the question with the following theorem [3].

Theorem 1. The [T, T−1] transformation is not isomorphic to a Bernoulli shift. Moreover, it is

not loosely Bernoulli.
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The [T, T−1] transformation also has probabilistic interest. Given x let

S(i) = Sx(i) =


∑i−1

0 xj if i > 0

−
∑−1

i xj if i < 0

0 if i = 0.

Define C(x, y)i = yS(i). We refer to this as the color observed at time i.

Probabilists have focused on two questions. The first question is of reconstruction. In this

problem you are given the sequence C(x, y)i, i ≥ 0, and you are trying to reconstruct y. The best

result for reconstruction is the following theorem by Matzinger [5].

Theorem 2. There exists a function F : X × Y → Y so that

1. F (x, y) = F (x′, y′) if C(x, y)j = C(x′, y′)j for all j ≥ 0 and

2. there exists an even m such that F (x, y)j = yj+m for all j or F (x, y)j = y−j+m for all j a.s.

In the course of the proof Matzinger proves the following results. There is a function H : X ×Y →
ZN and sets Di such that

3. for all (x, y) and i if C(x′, y′)j = C(x, y)j for all j ≤ ei4 then H(x, y)i = H(x′, y′)i,

4. lim µ(Di) = 1, and

5. if C(x, y)j = C(x′, y′)j for all j, there exists an even m such that yj = y′j+m, and both

(x, y), (x′, y′) ∈ Di then

yj+Sx(H(x,y)i) = y′j+Sx′ (H(x′,y′)i
.

Note: The last half of Theorem 2 does not appear in this form in [5]. To see how this follows

we choose Di to be the set denoted by ∩j≥i

(
Ej

0 ∩ Ej
)

in [5]. We choose H(x, y)i to be the value

denoted by ti6 in [5]. Then statement 3 follows from Algorithm 7. Statement 4 follows from Lemmas

3 and 5. Statement 5 follows from Algorithms 3 and 7.

The second question of probabilistic interest is one of distinguishability. Each y and n deter-

mines a measure my,n on {red,blue}[n,∞) by

my,n(A) = µ′({x such that C(x, y) ∈ A}).

Call y and y′ distinguishable if my,n and my′,n are mutually singular for all n. It is easy to see that

if there exists an even m such that yi = y′i+m for all i or yi = y′−i+m for all i then y and y′ are not

distinguishable. The following question was raised by den Hollander and Keane and independently

by Benjamini and Kesten [1]. If y and y′ are not distinguishable, does there necessarily exist an
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even m such that yi = y′i+m for all i or yi = y′−i+m for all i? This was recently answered in the

negative by Lindenstrauss [4].

In this paper we use Theorem 2 to study the ergodic theoretic properties of the [T, T−1]

process. We call the factor that associates two points (x, y) and (x′, y′) if C(x, y)i = C(x′, y′)i for

all i the scenery factor, (X × Y, [T, T−1],G, µ). The main result of this paper is the following.

Theorem 3. The scenery factor is not isomorphic to a Bernoulli shift. Moreover it is not loosely

Bernoulli.

Recently, Steif gave an elementary proof of a closely related theorem. He proved that the

scenery factor is not a finitary factor of a Bernoulli shift [9].

2 Proof

The equivalence relation that associates (x, y) and (x′, y′) if

1. C(x, y)i = C(x′, y′)i for all i and

2. y = Tmy′ for some even m

defines a factor, (X × Y, [T, T−1],H, µ). The factor (X × Y, [T, T−1],H, µ) is a two point extension

of the scenery factor a.s. Both of these statements follow from Theorem 2.

For any partition P and any a, b ∈ P Z let

d̄P
[0,N ](a, b) = |{i : i ∈ [0, N ] and ai 6= bi}|/(N + 1).

For any two measures µ and ν on P Z define

d̄P
[0,N ](µ, ν) = inf

m

∫
d[0,N ](a, b)dm

where the infinum is taken over all joinings of µ and ν. We set P to be the time zero partition of

X × Y . A point (x, y) in X × Y defines a sequence in P Z with ith component P ([T, T−1]i(x, y)) =

(xi, Ci(x, y)).

Theorem 4. (X × Y, [T, T−1],F , µ) is isomorphic to (X × Y, [T, T−1],H, µ) × (Ω, σ, Σ, ν), where

(Ω, σ, Σ, ν) is a Bernoulli shift.

Proof. An atom of H is given by z, a ∈ {red,blue}Z such that there exists an x so that zi = C(x, a)i

for all i. The atoms given by z, a and z′, a′ are equivalent if z = z′ and there exists an even m such

that ai = a′i+m. Given an atom z, a of H define µ̃z,a by

µ̃z,a(A) = µ{(x, y) ∈ A | C(x, y)i = zi ∀i and there exists an even m such that y = Tma}.
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Given x ∈ X define x̄ = {x′ : xi = x′i ∀ i ≤ 0}. Also define µ(x,y) by

µ(x,y)(A) = µ{(x′, y′) ∈ A | x′ ∈ x̄ and C(x, y)i = C(x′, y′)i ∀i}.

By Thouvenot’s relative isomorphism theorem, the theorem is equivalent to checking that the

[T, T−1] transformation is relatively very weak Bernoulli with respect to (X×Y, [T, T−1],H, µ)

[10] [7]. This means that given almost every atom z, a of H and any ε > 0 there exists an N and a

set G such that

1. µ̃z,a(G) > 1− ε and

2. for any (x, y), (x′, y′) ∈ G

d̄P
[0,N ](µ(x,y), µ(x′,y′)) < ε.

Fix z and a. Let

SM =
{
(x, y) : µ(x,y) {(x̃, ỹ) : (x̃, ỹ) ∈ DM} > 1− ε

}
.

Let M be such that µ̃z,a(SM ) > 1 − ε. This exists for almost every atom by Theorem 2. Now let

G be SM restricted to the atom defined by z, a.

Let (c, d), (e, f) ∈ DM both be points in the atom determined by z and a. By Line 5 of

Theorem 2 we have that

dj+S(H(c,d)M ) = fj+S(H(e,f)M )

Thus for any (x, y), (x′, y′) ∈ G and any joining γ of µ(x,y) and µ(x′,y′) we have

γ{(c, d), (e, f) : dj+S(H(c,d)M ) = fj+S(H(e,f)M ) for all j} > 1− 2ε.

Consider a joining Γ of µ(x,y) and µ(x′,y′) such that ci = ei for all i > H(c, d)M = H(e, f)M .

We get that

Γ {(c, d), (e, f) : C(c, d)j = C(e, f)j for all j > H(c, d)M} > 1− 2ε.

Let N > eM4
/ε > H(c, d)M/ε. Thus the joining Γ shows that

d̄P
[0,N ](µ(x,y), µ(x′,y′)) < 3ε.

Proof of Theorem 3: By Theorem 1 the [T, T−1] transformation is not isomorphic to a Bernoulli

shift [3]. By Theorem 4 the [T, T−1] transformation is the direct product of the factor (X ×
Y, [T, T−1],H, µ) with a Bernoulli shift. Thus the factor (X × Y, [T, T−1],H, µ) is not isomorphic

to a Bernoulli shift. By [3] the [T, T−1] transformation is not loosely Bernoulli. As the direct
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product of a loosely Bernoulli transformation and a Bernoulli shift is loosely Bernoulli, the factor

(X × Y, [T, T−1],H, µ) is not loosely Bernoulli either.

The factor (X × Y, [T, T−1],H, µ) is a two point extension of the scenery factor. It is weak

mixing since it is the factor of the [T, T−1] transformation which is K (and thus weak mixing). The

two point extension of a Bernoulli shift which is weak mixing is isomorphic to a Bernoulli shift [8].

Thus scenery factor is not isomorphic to a Bernoulli shift.

Similarly we can show that the scenery factor is not loosely Bernoulli. The factor (X ×
Y, [T, T−1],H, µ) is not loosely Bernoulli. The two point extension of a loosely Bernoulli transfor-

mation is loosely Bernoulli [8]. Thus if the scenery factor were loosely Bernoulli then the factor

(X × Y, [T, T−1],H, µ) would be as well. This can not be, so the scenery factor is not loosely

Bernoulli and is not Kakutani equivalent to a Bernoulli shift [2].
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