The scenery factor of the $\left[T, T^{-1}\right]$ transformation is not loosely

Bernoulli

Christopher Hoffman

August 9, 2002

Abstract

Kalikow proved that the $\left[T, T^{-1}\right]$ transformation is not isomorphic to a Bernoulli shift [3]. We show that the scenery factor of the $\left[T, T^{-1}\right]$ transformation is not isomorphic to a Bernoulli shift. Moreover we show that it is not Kakutani equivalent to a Bernoulli shift.

1 Introduction

The $\left[T, T^{-1}\right]$ transformation is a random walk on a random scenery. It is defined as follows. Let $X=\{1,-1\}^{\mathbb{Z}}$ and $Y=\{\text { red, blue }\}^{\mathbb{Z}}$. Let σ be the left shift on $X\left(\sigma(x)_{i}=x_{i+1}\right)$ and let T be the left shift on Y. Let μ^{\prime} be ($1 / 2,1 / 2$) product measure on X and $\mu^{\prime \prime}$ be $(1 / 2,1 / 2)$ product measure on Y.

We define the transformation $\left[T, T^{-1}\right]: X \times Y \rightarrow X \times Y$ by

$$
\left[T, T^{-1}\right](x, y)= \begin{cases}(\sigma(x), T(y)) & \text { if } x_{0}=1 \\ \left(\sigma(x), T^{-1}(y)\right) & \text { if } x_{0}=-1 .\end{cases}
$$

Let \mathcal{F} be the Borel σ-algebra and $\mu=\mu^{\prime} \times \mu^{\prime \prime}$. Then the $\left[T, T^{-1}\right]$ transformation is the four-tuple $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{F}, \mu\right)$.

The $\left[T, T^{-1}\right]$ transformation was introduced for its ergodic theoretic properties. It is easy to show that this transformation is a K transformation [6]. For many years it was an open question to determine whether the $\left[T, T^{-1}\right]$ transformation is isomorphic to a Bernoulli shift. Kalikow settled the question with the following theorem [3].

Theorem 1. The $\left[T, T^{-1}\right]$ transformation is not isomorphic to a Bernoulli shift. Moreover, it is not loosely Bernoulli.

The $\left[T, T^{-1}\right]$ transformation also has probabilistic interest. Given x let

$$
S(i)=S_{x}(i)= \begin{cases}\sum_{0}^{i-1} x_{j} & \text { if } i>0 \\ -\sum_{i}^{-1} x_{j} & \text { if } i<0 \\ 0 & \text { if } i=0\end{cases}
$$

Define $C(x, y)_{i}=y_{S(i)}$. We refer to this as the color observed at time i.
Probabilists have focused on two questions. The first question is of reconstruction. In this problem you are given the sequence $C(x, y)_{i}, i \geq 0$, and you are trying to reconstruct y. The best result for reconstruction is the following theorem by Matzinger [5].

Theorem 2. There exists a function $F: X \times Y \rightarrow Y$ so that

1. $F(x, y)=F\left(x^{\prime}, y^{\prime}\right)$ if $C(x, y)_{j}=C\left(x^{\prime}, y^{\prime}\right)_{j}$ for all $j \geq 0$ and
2. there exists an even m such that $F(x, y)_{j}=y_{j+m}$ for all j or $F(x, y)_{j}=y_{-j+m}$ for all j a.s.

In the course of the proof Matzinger proves the following results. There is a function $H: X \times Y \rightarrow$ $\mathbb{Z}^{\mathbb{N}}$ and sets D_{i} such that
3. for all (x, y) and i if $C\left(x^{\prime}, y^{\prime}\right)_{j}=C(x, y)_{j}$ for all $j \leq e^{i^{4}}$ then $H(x, y)_{i}=H\left(x^{\prime}, y^{\prime}\right)_{i}$,
4. $\lim \mu\left(D_{i}\right)=1$, and
5. if $C(x, y)_{j}=C\left(x^{\prime}, y^{\prime}\right)_{j}$ for all j, there exists an even m such that $y_{j}=y_{j+m}^{\prime}$, and both $(x, y),\left(x^{\prime}, y^{\prime}\right) \in D_{i}$ then

$$
y_{j+S_{x}\left(H(x, y)_{i}\right)}=y_{j+S_{x^{\prime}}\left(H\left(x^{\prime}, y^{\prime}\right)_{i}\right.}^{\prime} .
$$

Note: The last half of Theorem 2 does not appear in this form in [5]. To see how this follows we choose D_{i} to be the set denoted by $\cap_{j \geq i}\left(E_{0}^{j} \cap E^{j}\right)$ in [5]. We choose $H(x, y)_{i}$ to be the value denoted by t_{6}^{i} in [5]. Then statement 3 follows from Algorithm 7. Statement 4 follows from Lemmas 3 and 5. Statement 5 follows from Algorithms 3 and 7.

The second question of probabilistic interest is one of distinguishability. Each y and n determines a measure $m_{y, n}$ on $\{\text { red,blue }\}^{[n, \infty)}$ by

$$
m_{y, n}(A)=\mu^{\prime}(\{x \text { such that } C(x, y) \in A\}) .
$$

Call y and y^{\prime} distinguishable if $m_{y, n}$ and $m_{y^{\prime}, n}$ are mutually singular for all n. It is easy to see that if there exists an even m such that $y_{i}=y_{i+m}^{\prime}$ for all i or $y_{i}=y_{-i+m}^{\prime}$ for all i then y and y^{\prime} are not distinguishable. The following question was raised by den Hollander and Keane and independently by Benjamini and Kesten [1]. If y and y^{\prime} are not distinguishable, does there necessarily exist an
even m such that $y_{i}=y_{i+m}^{\prime}$ for all i or $y_{i}=y_{-i+m}^{\prime}$ for all i ? This was recently answered in the negative by Lindenstrauss [4].

In this paper we use Theorem 2 to study the ergodic theoretic properties of the $\left[T, T^{-1}\right]$ process. We call the factor that associates two points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ if $C(x, y)_{i}=C\left(x^{\prime}, y^{\prime}\right)_{i}$ for all i the scenery factor, $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{G}, \mu\right)$. The main result of this paper is the following.

Theorem 3. The scenery factor is not isomorphic to a Bernoulli shift. Moreover it is not loosely Bernoulli.

Recently, Steif gave an elementary proof of a closely related theorem. He proved that the scenery factor is not a finitary factor of a Bernoulli shift [9].

2 Proof

The equivalence relation that associates (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ if

1. $C(x, y)_{i}=C\left(x^{\prime}, y^{\prime}\right)_{i}$ for all i and
2. $y=T^{m} y^{\prime}$ for some even m
defines a factor, $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$. The factor $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ is a two point extension of the scenery factor a.s. Both of these statements follow from Theorem 2.

For any partition P and any $a, b \in P^{\mathbb{Z}}$ let

$$
\bar{d}_{[0, N]}^{P}(a, b)=\mid\left\{i: i \in[0, N] \text { and } a_{i} \neq b_{i}\right\} \mid /(N+1)
$$

For any two measures μ and ν on $P^{\mathbb{Z}}$ define

$$
\bar{d}_{[0, N]}^{P}(\mu, \nu)=\inf _{m} \int d_{[0, N]}(a, b) d m
$$

where the infinum is taken over all joinings of μ and ν. We set P to be the time zero partition of $X \times Y$. A point (x, y) in $X \times Y$ defines a sequence in $P^{\mathbb{Z}}$ with i th component $P\left(\left[T, T^{-1}\right]^{i}(x, y)\right)=$ $\left(x_{i}, C_{i}(x, y)\right)$.

Theorem 4. $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{F}, \mu\right)$ is isomorphic to $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right) \times(\Omega, \sigma, \Sigma, \nu)$, where $(\Omega, \sigma, \Sigma, \nu)$ is a Bernoulli shift.

Proof. An atom of \mathcal{H} is given by $z, a \in\{\text { red,blue }\}^{\mathbb{Z}}$ such that there exists an x so that $z_{i}=C(x, a)_{i}$ for all i. The atoms given by z, a and z^{\prime}, a^{\prime} are equivalent if $z=z^{\prime}$ and there exists an even m such that $a_{i}=a_{i+m}^{\prime}$. Given an atom z, a of \mathcal{H} define $\tilde{\mu}_{z, a}$ by

$$
\tilde{\mu}_{z, a}(A)=\mu\left\{(x, y) \in A \mid C(x, y)_{i}=z_{i} \forall i \text { and there exists an even } m \text { such that } y=T^{m} a\right\} .
$$

Given $x \in X$ define $\bar{x}=\left\{x^{\prime}: x_{i}=x_{i}^{\prime} \forall i \leq 0\right\}$. Also define $\mu_{(x, y)}$ by

$$
\mu_{(x, y)}(A)=\mu\left\{\left(x^{\prime}, y^{\prime}\right) \in A \mid x^{\prime} \in \bar{x} \text { and } C(x, y)_{i}=C\left(x^{\prime}, y^{\prime}\right)_{i} \forall i\right\} .
$$

By Thouvenot's relative isomorphism theorem, the theorem is equivalent to checking that the $\left[T, T^{-1}\right]$ transformation is relatively very weak Bernoulli with respect to ($X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu$) [10] [7]. This means that given almost every atom z, a of \mathcal{H} and any $\epsilon>0$ there exists an N and a set G such that

1. $\tilde{\mu}_{z, a}(G)>1-\epsilon$ and
2. for any $(x, y),\left(x^{\prime}, y^{\prime}\right) \in G$

$$
\bar{d}_{[0, N]}^{P}\left(\mu_{(x, y)}, \mu_{\left(x^{\prime}, y^{\prime}\right)}\right)<\epsilon .
$$

Fix z and a. Let

$$
S_{M}=\left\{(x, y): \mu_{(x, y)}\left\{(\tilde{x}, \tilde{y}):(\tilde{x}, \tilde{y}) \in D_{M}\right\}>1-\epsilon\right\} .
$$

Let M be such that $\tilde{\mu}_{z, a}\left(S_{M}\right)>1-\epsilon$. This exists for almost every atom by Theorem 2 . Now let G be S_{M} restricted to the atom defined by z, a.

Let $(c, d),(e, f) \in D_{M}$ both be points in the atom determined by z and a. By Line 5 of Theorem 2 we have that

$$
d_{j+S\left(H(c, d)_{M}\right)}=f_{j+S\left(H(e, f)_{M}\right)}
$$

Thus for any $(x, y),\left(x^{\prime}, y^{\prime}\right) \in G$ and any joining γ of $\mu_{(x, y)}$ and $\mu_{\left(x^{\prime}, y^{\prime}\right)}$ we have

$$
\gamma\left\{(c, d),(e, f): d_{j+S\left(H(c, d)_{M}\right)}=f_{j+S\left(H(e, f)_{M}\right)} \text { for all } j\right\}>1-2 \epsilon .
$$

Consider a joining Γ of $\mu_{(x, y)}$ and $\mu_{\left(x^{\prime}, y^{\prime}\right)}$ such that $c_{i}=e_{i}$ for all $i>H(c, d)_{M}=H(e, f)_{M}$. We get that

$$
\Gamma\left\{(c, d),(e, f): C(c, d)_{j}=C(e, f)_{j} \text { for all } j>H(c, d)_{M}\right\}>1-2 \epsilon .
$$

Let $N>e^{M^{4}} / \epsilon>H(c, d)_{M} / \epsilon$. Thus the joining Γ shows that

$$
\bar{d}_{[0, N]}^{P}\left(\mu_{(x, y)}, \mu_{\left(x^{\prime}, y^{\prime}\right)}\right)<3 \epsilon .
$$

Proof of Theorem 3: By Theorem 1 the $\left[T, T^{-1}\right]$ transformation is not isomorphic to a Bernoulli shift [3]. By Theorem 4 the $\left[T, T^{-1}\right.$] transformation is the direct product of the factor ($X \times$ $\left.Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ with a Bernoulli shift. Thus the factor $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ is not isomorphic to a Bernoulli shift. By [3] the $\left[T, T^{-1}\right]$ transformation is not loosely Bernoulli. As the direct
product of a loosely Bernoulli transformation and a Bernoulli shift is loosely Bernoulli, the factor $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ is not loosely Bernoulli either.

The factor $\left(X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ is a two point extension of the scenery factor. It is weak mixing since it is the factor of the $\left[T, T^{-1}\right]$ transformation which is K (and thus weak mixing). The two point extension of a Bernoulli shift which is weak mixing is isomorphic to a Bernoulli shift [8]. Thus scenery factor is not isomorphic to a Bernoulli shift.

Similarly we can show that the scenery factor is not loosely Bernoulli. The factor ($X \times$ $\left.Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ is not loosely Bernoulli. The two point extension of a loosely Bernoulli transformation is loosely Bernoulli [8]. Thus if the scenery factor were loosely Bernoulli then the factor ($\left.X \times Y,\left[T, T^{-1}\right], \mathcal{H}, \mu\right)$ would be as well. This can not be, so the scenery factor is not loosely Bernoulli and is not Kakutani equivalent to a Bernoulli shift [2].

References

[1] I. Benjamini, H. Kesten. Distinguishing sceneries by observing the scenery along a random walk path. J. Anal. Math. 69 (1996), 97-135.
[2] J. Feldman. New K-automorphisms and a problem of Kakutani. Israel J. Math. 24 (1976), no. 1, 16-38.
[3] S. Kalikow. T, T^{-1} transformation is not loosely Bernoulli. Annals of Math. 115 (1982), 393409.
[4] E. Lindenstrauss. Indistinguishable sceneries. Rand. Struc. ${ }^{\mathcal{B}}$ Algorithms 14 (1999), No. 1, pp. 71-86.
[5] H. Matzinger. Reconstructing a 2-color scenery by observing it along a simple random walk path. preprint.
[6] I. Meilijson. Mixing properties of a class of skew-products. Israel J. Math. 19 (1974), 266-270.
[7] M. Rahe. Relatively finitely determined implies relatively very weak Bernoulli. Canad. J. Math. 30 (1978), no. 3, 531-548.
[8] D. Rudolph. If a two-point extension of a Bernoulli shift has an ergodic square, then it is Bernoulli. Israel J. Math. 30 (1978), 159-180.
[9] J. Steif. The T, T^{-1}-process, finitary codings and weak Bernoulli. Israel Journal of Math. 125 (2001), 29-43.
[10] J. Thouvenot. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli. Israel J. Math. 21 (1975), 177-207.

