Problem 1.1. Goodman 10.1.1
Problem 1.2. Goodman 10.1.2
Problem 1.3. Goodman 10.1.3
Problem 1.4. Goodman 10.1.4
Problem 1.5. Let D_{n} be the dihedral group which is the symmetry group of the regular n-gon. Recall that D_{n} has the presentation

$$
D_{n}=\left\{e, r, r^{2}, \ldots, r^{n}, j, r j, \ldots, r^{n-1} j\right\}
$$

where r is rotation by $\frac{2 \pi}{n}$ radians counterclockwise and j is the reflection across the x-axis. Recall also that $j r=r^{n-1} j$.
(a) If $n \geq 3$, show that D_{n} is solvable but not simple.
(b) Construct three different composition series for D_{12} and for each one, indicate the composition factors. (By the Jordan-Hölder theorem, each composition series should have the same composition factors after reordering.)
Problem 1.6. Goodman 10.3.1
Problem 1.7. Goodman 10.3.4
Problem 1.8. Goodman 10.3.6
Problem 1.9. Let p be an odd prime. Recall that

$$
\mathrm{GL}_{2}(\mathbb{Z} / p)=\left\{\left.A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z} / p \text { and } \operatorname{det} A \neq 0\right\} .
$$

Let $\mathrm{SL}_{2}(\mathbb{Z} / p) \subset \mathrm{GL}_{2}(\mathbb{Z} / p)$ be the subgroup consisting of 2×2 matrices A with $\operatorname{det} A=1$. Compute the center Z of $\mathrm{SL}_{2}(\mathbb{Z} / p)$.

Problem 1.10.

(a) Compute the order of $\mathrm{GL}_{2}(\mathbb{Z} / p)$.
(b) Compute the order of $\mathrm{SL}_{2}(\mathbb{Z} / p)$.
(c) Let $\mathrm{PSL}_{2}(\mathbb{Z} / p)=\mathrm{SL}_{2}(\mathbb{Z} / p) / Z$ where $Z \subset \mathrm{SL}_{2}(\mathbb{Z} / p)$ is the center. Compute the order of $\mathrm{PSL}_{2}(\mathbb{Z} / p)$.

