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1. Problem 4.2 Greatest common divisors are well defined up to units. So your answer can
differ with others by a unit. All the coefficient rings are fields in this problem so we will
apply Euclidean algorithm. The procedure is the same throughout the four so I only write
out the first.

(a)

x3 − 6x2 + 14x− 15− (x3 − 8x2 + 21x− 18) =2x2 − 7x+ 3

x3 − 8x2 + 21x− 18− x
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39

2
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39

2
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3
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x(
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3
x− 5) =6x− 18

3

5
x− 5− 5

18
(6x− 18) = 0

Hence the greatest common divisor is x−3. Going backwards, we get a(x) = −1
10
x2+ 11

30
x

and b(x) = 1
10
x2 − 1

6
x+ 1

6
.

(b) a(x) = x2 + x+ 1 and b(x) = −x2 with greatest common divisor being 1.

(c) a(x) = x+ 4x2 and b = 2 + x2 with greatest common divisor being 1.

(d) a(x) = 324
3007

x2 + 468
3007

x+ 757
3007

and b(x) = −( 81
3007

x2 + 117
3007

x+ 7
3007

) with greatest common
divisor being 1.

2. Problem 4.3

(a) x4 − 2x3 + 2x2 + x+ 4 = (x2 + x+ 1) · (x2 − 3x+ 4).

(b) This is a polynomial of degree four. So if it is reducible it either has a root in Q or
factors into a product of quadrics. If it has a root a

b
in Q, then by corollary 17.15, it

has a root a ∈ Z and a | −2. Then α = ±1,±2. But after plugging in these four values
into the polynomial I did not get zero. Therefore it is impossible that it has a linear
factor. Now suppose

x4 − 5x3 + 3x− 2 = (x2 + ax+ b)(x2 + cx+ d).

Comparing coefficients, we get

a+ c =− 5

ac+ b+ d =0

ad+ bc =3

bd =− 2

Looking at the last equation, we deduce that (|b|, |d|) = (1, 2) or (2, 1) = (|b|, |d|).
Plugging in four possibilities the a and c one gets is never integral. Hence we conclude
that this polynomial is not reducible.

(c) Use Eisenstein’s criterion with p = 2.

(d) Use Eisenstein’s criterion with p = 3.
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3. Problem 4.4 A degree two polynomial with field coefficient is irreducible if and only if it
has no roots. So x2 + x + 1 is the only irreducible polynomial of degree 2. A degree three
polynomial with field coefficient is irreducible if and only if it has no root. So the only
possibilities are x3 + x+ 1 and x3 + x2 + 1.

4. Problem 4.5 If a polynomial of degree greater than 2 is irreducible, it must not have any
root. So the only possibilities are x4 +x3 + 1, x4 +x2 + 1, x4 +x+ 1, x4 +x3 +2 +x+ 1. But

x4 + x2 + 1 = (x2 + x+ 1)2.

By looking at all possible products of quadrics in Z2[x], we conclude that x4+x3+1, x4+x+1
and x4 + x4 + x3 + x2 + x+ 1 are the irreducible polynomials of degree 4.

5. Problem 4.6

(a) Let us write hi ∈ Z and gi ∈ Z as the coefficient of h and g in the i-th degree term.
Then by comparing the constant terms, we get 2 = g0 · h0 in Z. Since 2 is a prime
integer, we have either 2 | g0 or 2 | h0. Assume 2 | g0 and 2 | h0, we get 2 = 2g′0 · 2h′0 for
some integers g′0 and h′0. Canceling 2 on both sides, we get 2 | 1, which is not possible.
Hence 2 divides precisely one of the constant terms of g and h.

(b) Combined with (c).

(c) Suppose 2 | g0 as was hinted. We may induct on 0 ≤ j < k for gj. Suppose 2 | gu for
all u ≤ j, let us prove 2 | gj+1. Looking at the degree j + 1 ≤ k < n term, the left hand
side is zero. The right hand side is

gj+1h0 + gjh1 + · · · gqhn−q.

Hence
gj+1h0 = −(gjh1 + · · · gqhn−q).

By induction hypothesis, 2 | −(gjh1 + · · · gqhn−q) so 2 | gj+1h0. By part (a), 2 - h0 so
2 | gj+1. This completes the induction. We have shown that xn − 2 is not a factor of
two strictly lower degree polynomials with integer coefficient. Since xn− 2 is primitive,
xn − 2 is irreducible in Z[x]. By theorem 17.14, xn − 2 is irreducible in Q[x].

6. Problem 4.8 By theorem 17.22, the ideal (f) is maximal hence prime. Hence if f | p · q,
either f | p or f | q.

7. Problem 4.9 Plugging r
s
, we get

0 = a0 + a1
r

s
+ · · · an

rn

sn
.

Multiplying sn on both sides, we get sna0 = −r(a1sn−1 + · · · anrn−1) or anr
n = −s(a0sn−1 +

· · · an−1rn−1). Then the first equality says r | sna0. Since r and s are relatively prime, so are
r and sn. This implies r | a0. The second equality would allow us to deduce that s | an.


