MATH 403 Winter 2018
Homework 4
Winter 2018

1. Problem 4.2 Greatest common divisors are well defined up to units. So your answer can differ with others by a unit. All the coefficient rings are fields in this problem so we will apply Euclidean algorithm. The procedure is the same throughout the four so I only write out the first.
(a)

$$
\begin{aligned}
x^{3}-6 x^{2}+14 x-15-\left(x^{3}-8 x^{2}+21 x-18\right) & =2 x^{2}-7 x+3 \\
x^{3}-8 x^{2}+21 x-18-\frac{x}{2}\left(2 x^{2}-7 x+3\right) & =-\frac{9}{2} x^{2}+\frac{39}{2} x-18 \\
2 x^{2}-7 x+3+\frac{4}{9}\left(-\frac{9}{2} x^{2}+\frac{39}{2} x-18\right) & =\left(\frac{5}{3}\right) x-5 \\
-\frac{9}{2} x^{2}+\frac{39}{2} x-18+\frac{27}{10} x\left(\frac{5}{3} x-5\right) & =6 x-18 \\
\frac{3}{5} x-5-\frac{5}{18}(6 x-18) & =0
\end{aligned}
$$

Hence the greatest common divisor is $x-3$. Going backwards, we get $a(x)=\frac{-1}{10} x^{2}+\frac{11}{30} x$ and $b(x)=\frac{1}{10} x^{2}-\frac{1}{6} x+\frac{1}{6}$.
(b) $a(x)=x^{2}+x+1$ and $b(x)=-x^{2}$ with greatest common divisor being 1 .
(c) $a(x)=x+4 x^{2}$ and $b=2+x^{2}$ with greatest common divisor being 1 .
(d) $a(x)=\frac{324}{3007} x^{2}+\frac{468}{3007} x+\frac{757}{3007}$ and $b(x)=-\left(\frac{81}{3007} x^{2}+\frac{117}{3007} x+\frac{7}{3007}\right)$ with greatest common divisor being 1 .

2. Problem 4.3

(a) $x^{4}-2 x^{3}+2 x^{2}+x+4=\left(x^{2}+x+1\right) \cdot\left(x^{2}-3 x+4\right)$.
(b) This is a polynomial of degree four. So if it is reducible it either has a root in \mathbf{Q} or factors into a product of quadrics. If it has a root $\frac{a}{b}$ in \mathbf{Q}, then by corollary 17.15, it has a root $a \in \mathbf{Z}$ and $a \mid-2$. Then $\alpha= \pm 1, \pm 2$. But after plugging in these four values into the polynomial I did not get zero. Therefore it is impossible that it has a linear factor. Now suppose

$$
x^{4}-5 x^{3}+3 x-2=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right) .
$$

Comparing coefficients, we get

$$
\begin{aligned}
a+c & =-5 \\
a c+b+d & =0 \\
a d+b c & =3 \\
b d & =-2
\end{aligned}
$$

Looking at the last equation, we deduce that $(|b|,|d|)=(1,2)$ or $(2,1)=(|b|,|d|)$. Plugging in four possibilities the a and c one gets is never integral. Hence we conclude that this polynomial is not reducible.
(c) Use Eisenstein's criterion with $p=2$.
(d) Use Eisenstein's criterion with $p=3$.
3. Problem 4.4 A degree two polynomial with field coefficient is irreducible if and only if it has no roots. So $x^{2}+x+1$ is the only irreducible polynomial of degree 2. A degree three polynomial with field coefficient is irreducible if and only if it has no root. So the only possibilities are $x^{3}+x+1$ and $x^{3}+x^{2}+1$.
4. Problem 4.5 If a polynomial of degree greater than 2 is irreducible, it must not have any root. So the only possibilities are $x^{4}+x^{3}+1, x^{4}+x^{2}+1, x^{4}+x+1, x^{4}+x^{3}+{ }^{2}+x+1$. But

$$
x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2} .
$$

By looking at all possible products of quadrics in $\mathbf{Z}_{2}[x]$, we conclude that $x^{4}+x^{3}+1, x^{4}+x+1$ and $x^{4}+x^{4}+x^{3}+x^{2}+x+1$ are the irreducible polynomials of degree 4 .

5. Problem 4.6

(a) Let us write $h_{i} \in \mathbf{Z}$ and $g_{i} \in \mathbf{Z}$ as the coefficient of h and g in the i-th degree term. Then by comparing the constant terms, we get $2=g_{0} \cdot h_{0}$ in \mathbf{Z}. Since 2 is a prime integer, we have either $2 \mid g_{0}$ or $2 \mid h_{0}$. Assume $2 \mid g_{0}$ and $2 \mid h_{0}$, we get $2=2 g_{0}^{\prime} \cdot 2 h_{0}^{\prime}$ for some integers g_{0}^{\prime} and h_{0}^{\prime}. Canceling 2 on both sides, we get $2 \mid 1$, which is not possible. Hence 2 divides precisely one of the constant terms of g and h.
(b) Combined with (c).
(c) Suppose $2 \mid g_{0}$ as was hinted. We may induct on $0 \leq j<k$ for g_{j}. Suppose $2 \mid g_{u}$ for all $u \leq j$, let us prove $2 \mid g_{j+1}$. Looking at the degree $j+1 \leq k<n$ term, the left hand side is zero. The right hand side is

$$
g_{j+1} h_{0}+g_{j} h_{1}+\cdots g_{q} h_{n-q} .
$$

Hence

$$
g_{j+1} h_{0}=-\left(g_{j} h_{1}+\cdots g_{q} h_{n-q}\right)
$$

By induction hypothesis, $2 \mid-\left(g_{j} h_{1}+\cdots g_{q} h_{n-q}\right)$ so $2 \mid g_{j+1} h_{0}$. By part (a), $2 \nmid h_{0}$ so $2 \mid g_{j+1}$. This completes the induction. We have shown that $x^{n}-2$ is not a factor of two strictly lower degree polynomials with integer coefficient. Since $x^{n}-2$ is primitive, $x^{n}-2$ is irreducible in $\mathbf{Z}[x]$. By theorem $17.14, x^{n}-2$ is irreducible in $\mathbf{Q}[x]$.
6. Problem 4.8 By theorem 17.22 , the ideal (f) is maximal hence prime. Hence if $f \mid p \cdot q$, either $f \mid p$ or $f \mid q$.
7. Problem 4.9 Plugging $\frac{r}{s}$, we get

$$
0=a_{0}+a_{1} \frac{r}{s}+\cdots a_{n} \frac{r^{n}}{s^{n}}
$$

Multiplying s^{n} on both sides, we get $s^{n} a_{0}=-r\left(a_{1} s^{n-1}+\cdots a_{n} r^{n-1}\right)$ or $a_{n} r^{n}=-s\left(a_{0} s^{n-1}+\right.$ $\left.\cdots a_{n-1} r^{n-1}\right)$. Then the first equality says $r \mid s^{n} a_{0}$. Since r and s are relatively prime, so are r and s^{n}. This implies $r \mid a_{0}$. The second equality would allow us to deduce that $s \mid a_{n}$.

