Problem 5.1. Judson 17.4.20
Problem 5.2. Judson 17.4.21
Problem 5.3. Judson 17.4.24
Problem 5.4. Judson 17.4.26
Problem 5.5. Find a formula for the number of polynomials of degree less than or equal to N in $\mathbb{Z} / 2[x]$. Use this to prove there are irreducible polynomials of arbitrarily large degree in this polynomial ring.

Problem 5.6. Sometimes we can prove irreducibility of a polynomial in $\mathbb{Q}[x]$ using a technique called "reduction mod p." Suppose that $f(x) \in \mathbb{Z}[x]$ is a polynomial of positive degree and $p \in \mathbb{Z}$ is a prime integer not dividing the highest degree coefficient of $f(x)$. Reduce the polynomial modulo p to get a polynomial $f_{p}(x) \in \mathbb{Z} / p[x]$. Prove that if $f_{p}(x)$ is irreducible in $\mathbb{Z} / p[x]$, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
Problem 5.7. Use Problem 5.6 to determine whether the following polynomials are irreducible:
(a) $x^{5}+x^{2}+2 \in \mathbb{Q}[x]$; and
(b) $x^{5}+x^{4}+2 x^{2}+2 x+2 \in \mathbb{Q}[x]$.

Problem 5.8. Determine whether or not $x^{3}+2 x+1$ and $x^{4}+3 x-2$ are congruent modulo the ideal $\left(x^{2}+2 x+2\right) \subset \mathbb{Q}[x]$.

Problem 5.9.

(a) Find a constant polynomial congruent to $x^{3}-x+1$ modulo the ideal $(x+2) \subset$ $\mathbb{Q}[x]$.
(b) Find a polynomial of degree <3 congruent to $x^{7}+x+1$ modulo the ideal $\left(x^{3}+x+1\right) \subset \mathbb{Z} / 3[x]$.
(c) Find a polynomial of degree <2 congruent to $x^{4}+2 x+4$ modulo the ideal $\left(x^{2}+1\right) \subset \mathbb{Z} / 5[x]$.
Problem 5.10. List a complete set of representatives of $\mathbb{Z} / 2[x] /\left(x^{4}+x^{2}+1\right)$.
Problem 5.11. Let $p=x^{2}+1 \in \mathbb{Z} / 3[x]$. Write down the multiplication table for $\mathbb{Z} / 3[x] /(p)$.
Problem 5.12. Find a field with 32 elements and another with 27 elements.

