MATH 403 Winter 2018
Homework 5
Winter 2018

1. Problem 5.1 Let R be a commutative ring with identity. Then the map $R[x] \rightarrow R[x]$ that sends $r(x) \in R[x]$ to $r(x+1)$ is a ring isomorphism (What is its inverse?). Hence if $R=F$ is a field, a polynomial $f \in F[x]$ is irreducible if and only if $f(x+1)$ is irreducible. Now to prove Φ_{p} is irreducible in $\mathbf{Q}[x]$, it is equivalent to show that

$$
\Phi_{p}(x+1)=x^{p-1}+\binom{p}{1}+\cdots+p
$$

is irreducible. This can be done by applying Eisenstien's criterion with prime p.
2. Problem 5.2 Suppose there are finitely many irreducible polynomials $\left\{p_{1}, \cdots, p_{n}(x)\right\}$ in $F[x]$. Consider the polynomial

$$
F=\prod_{i=1}^{n} p_{i}(x)+1
$$

Since F is a field, $F[x]$ is a principal ideal domain and in particular a unique factoriztion domain. Hence there exist finitely many p_{i} 's such that, after rearranging,

$$
F=\epsilon \prod_{i=1}^{l} p_{i}(x)
$$

where $\epsilon \in F$. Then

$$
p_{1} \mid F=\prod_{i=1}^{n} p_{i}(x)+1 .
$$

We also have $p_{1}(x) \mid \prod_{i=1}^{n} p_{i}(x)$ so that

$$
p_{1}(x) \mid 1
$$

which is impossible. Hence there are infinitely many irreducible polynomials in $F[x]$ for any field F.
3. Problem 5.3 Sine every nonzero number in \mathbf{Z} / p is relatively prime to p, we have that

$$
(\mathbf{Z} / p)^{\times}=\{1, \cdots, p-1\}
$$

is a group of size $p-1$. Hence these numbers all satisfy $x^{p-1}=1$. In particular, they satisfy $x^{p}=x$. The element 0 obviously also satisfies $x^{p}=x$. We see that the polynomial $x^{p}-x$ has p distinct roots in \mathbf{Z} / p. Now recall that if F is a field and $f(x) \in F[x]$ has a root $\alpha \in F$, then $x-\alpha$ is a linear factor for F. But $x^{p}-x$ is of degree p so can have at most p linear factors. We get the result.
4. Problem 5.4 Something stronger is true: The units in $F[x]$ is exactly $F-\{0\}$, namely, nonzero constants. Let me start with a commnet on degrees. If D is an integral domain, then for any polynomials $f, g \in D[x]$, we have

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg} f+\operatorname{deg} g
$$

This is not true if D is not an integral domain. For this, if a, b are two non-zero element in D with $a \cdot b=0$, consider two degree 1 polynomials $a x$ and $b x$ in $D[x]$. Then

$$
\operatorname{deg}(a x \cdot b x)=\operatorname{deg} a b x^{2}=\operatorname{deg} 0=?
$$

Since F is a field, the above statement is true. If $f \in F[x]$ is not a constant polynomial, then for any other $g \in F[x]$, we have

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg} f+\operatorname{deg} g \geq \operatorname{deg} f \geq 1
$$

Hence it is impossible that $f \cdot g=1$. This shows that if $f \in F[x]$ is a unit, f has to be a constant (non-zero of course). Conversely, since $F \subset F[x]$ is a subring, nonzero elements in F are automatically units in $F[x]$.
5. A polynomial $f=a_{N} x^{N}+\cdots a_{0}$ is of degree smaller than or equal to N if and only if each a_{i} is 0 or 1 . Hence we have 2^{N+1} possibiilities. We have shown in problem 5.2 that there are infinitely many irreducible polynomials in $\mathbf{Z} / 2[x]$. Hence if the degree of irreducible polynomials in $\mathbf{Z} / 2[x]$ is bounded by an integer N, the size of the set of irreducible polynomials would be bounded by 2^{N+1}, a contradiciton.
6. Problem 5.6 We may prove by contradiction. Suppose $f \in \mathbf{Q}[x]$ is not irreducible, then by Gauss' lemma, there exists $a, b \in \mathbf{Z}[x]$ such that $f=a \cdot b \in \mathbf{Z}[x]$ with $\operatorname{deg} a, \operatorname{deg} b<\operatorname{deg} f$. Then $f_{p}=a_{p} \cdot b_{p}$ where $(-)_{p}$ means the image of $-\in \mathbf{Z}[x]$ in $\mathbf{Z} / p[x]$ under the ring map $\mathbf{Z}[x] \rightarrow \mathbf{Z} / p[x]$. Then since p does not divide the leading coefficient of f, certainly p does not divide the leading coefficients of a and b. Then

$$
\begin{aligned}
\operatorname{deg} f & =\operatorname{deg} f_{p} \\
\operatorname{deg} a & =\operatorname{deg} a_{p} \\
\operatorname{deg} b & =\operatorname{deg} b_{p}
\end{aligned}
$$

We see that $\operatorname{deg} a_{p}, \operatorname{deg} b_{p}<f_{p}$ hence f_{p} is reducible in $\mathbf{Z} / p[x]$, a contradiciton.

