MATH 403 Winter 2018
Homework 7
Winter 2018

- Problem 2

1. One checks that the norm $N(a+b i)=a^{2}+b^{2}$ satisfies the property that if $N(\alpha)$ is a prime integer, then α is irreducible in $\mathbf{Z}[i]$. Writing an integer $n=a^{2}+b^{2}$ as a sum of two squares yields a factorization $n=(a+b i) \cdot(a-b i)$ in $\mathbf{Z}[i]$. Here $13=3^{2}+2^{2}$ and $17=1^{2}+4^{2}$. Hence

$$
\begin{aligned}
& 13=(3+2 i)(3-2 i) \\
& 17=(1+4 i)(1-4 i)
\end{aligned}
$$

Then as was noted above, $3 \pm 2 i$ and $1 \pm 4 i$ has prime norm. This shows that the two factorizations I just wrote down are the factorizations of 13 and 17 into irreducible factors.
2.

$$
\begin{aligned}
221=13 \cdot 17=(3+2 i)(3-2 i) \cdot(1+4 i)(1-4 i) & =(3+2 i)(1+4 i) \cdot(3-2 i)(1-4 i) \\
=(-5+14 i) \cdot(-5-14 i) & =5^{2}+14^{2}
\end{aligned}
$$

On the other hand we have $221=(3+2 i)(1-4 i) \cdot(3-2 i)(1+4 i)=11^{2}+10^{2}$.

- Problem 3 and 6

Four properties of ω will be used:
$-\omega=\frac{-1}{2}+\frac{\sqrt{3}}{2} i ;$
$-\omega^{2}+\omega+1=0$
$-\omega \cdot \bar{\omega}=1$ and
$-\omega+\bar{\omega}=-1$
Step 1: A better description of $\mathbf{Z}[\omega]$.
By property 2, $a+b \omega+c \omega^{2}=(a-c)+(b-c) \omega$. Hence every element in $\mathbf{Z}[\omega]$ can be written as $a+b \omega$ for some $a, b \in \mathbf{Z}$. I claim that such expression is actually unique. For this, if $a+b \omega=a^{\prime}+b^{\prime} \omega$, then using the first property, we get

$$
a-\frac{b}{2}+\frac{\sqrt{3} b}{2} i=a^{\prime}-\frac{b^{\prime}}{2}+\frac{\sqrt{3} b^{\prime}}{2} i
$$

Comparing the real and imaginary parts, we conclude that

$$
\begin{aligned}
a-\frac{b}{2} & =a^{\prime}-\frac{b^{\prime}}{2} \\
\frac{\sqrt{3} b}{2} & =\frac{\sqrt{3} b^{\prime}}{2}
\end{aligned}
$$

Hence $a=a^{\prime}$ and $b=b^{\prime}$.

Step 2: Define a multiplicative norm N on $\mathbf{Z}[\omega]$.
Inspired by our previous experiences of constructing norms, one naturally tries (and pray)

$$
N(a+b \omega):=(a+b \omega) \cdot \overline{(a+b \omega)}
$$

Since $\overline{a+b \omega}=a+b \bar{\omega}$, with property 3 and 4 of ω, we have

$$
(a+b \omega) \cdot(a+b \bar{\omega})=a^{2}-a b+b^{2}
$$

Since this is just the complex norm of $a+b \omega$, the function N is multiplicative. Moreover this also implies $N(a+b \omega)$ is non-negative. One can also check this by looking at the discriminant of the quadric $a^{2}-a b+b^{2}$. For example, for every fixed $b \in \mathbf{Z}$, the discriminant $D(b)$ is $b^{2}-4 b^{2}=-3 b^{2}$. So when $b=0$, the norm is a^{2}, which is non-negative. When $b \neq 0$, $D(b)<0$ so $a^{2}-a b+b^{2}$ is either positive or negative as a function in a. Plugging in $a=0$, we get a positive value so $a^{2}-a b+b^{2}$ is strictly greater than zero as a function of a with a fixed non-zero b.

Step 3: Check that N we just defined is a Euclidean norm.
$\mathbf{Z}[\omega] \subset \mathbf{C}$ is a subring. Hence $\mathbf{Z}[\omega]$ is an integral domain. N is non-negative as we have seen. The main task is to show that for any $a+b \omega$ and $c+d \omega$, either $c+d \omega \mid a+b \omega$ or there exist $m+n \omega$ and $r+s \omega$ such that

$$
a+b \omega=(m+n \omega) \cdot(c+d \omega)+r+s \omega
$$

with $N(r+s \omega)<N(c+d \omega)$. Suppose $c+d \omega$ does not divide $a+b \omega$. Then in \mathbf{C}, with property 4 of ω we have

$$
\frac{a+b \omega}{c+d \omega}=\frac{(a+b \omega)(c+d \bar{\omega})}{(c+d \omega)(c+d \bar{\omega})}=\frac{a c+b d-a d}{N(c+d \omega)}+\frac{b c-a d}{N(c+d \omega)} \omega .
$$

Let $\alpha=\frac{a c+b d-a d}{N(c+d \omega)}$ and $\beta=\frac{b c-a d}{N(c+d \omega)}$. Choosing $m, n \in \mathbf{Z}$ such that $|m-\alpha| \leq \frac{1}{2}$ and $|n-\beta| \leq \frac{1}{2}$, we have

$$
a+b \omega=(c+d \omega)(m+n \omega)+(c+d \omega)(\alpha-m+(\beta-n) \omega)
$$

Since $a+b \omega$ and $(c+d \omega)(m+n \omega) \in \mathbf{Z}[\omega],(c+d \omega)(m-\alpha+(n-\beta) \omega) \in \mathbf{Z}[\omega]$. Set $r+s \omega=(c+d \omega) \alpha-m+(\beta-n) \omega)$. Then to prove $N(r+s \omega)<N(c+d \omega)$, it is sufficient to prove that the complex norm $|\alpha-m+(\beta-n) \omega|<1$. But this follows from our choice of m and n. So far we have done problem 3 .

Step 4: Compute the units of $\mathbf{Z}[\omega]$.
I claim that $\alpha \in \mathbf{Z}[\omega]$ is a unit if and only if $N(\alpha)=1$. If α is a unit, then

$$
1=N(1)=N\left(\alpha \cdot \alpha^{-1}\right)=N(\alpha) N\left(\alpha^{-1}\right)
$$

Since N is non-negative, we see that $N(\alpha)=1$. But $1=a^{2}-a b+b^{2}$ only when $(a, b)=$ $(\pm 1,0),(0, \pm 1),(1,1),(-1,-1)$. We see that the possible choices of a unit is $\pm 1, \pm \omega, 1+\omega$ and $-1-\omega$. One easily checks that these are units. Therefore the claim is proved.

Step 5: 7.6(a) $\Longleftrightarrow 7.6(\mathrm{~b})$
The ring map $\varphi: \mathbf{Z}[x] \rightarrow \mathbf{Z}[\omega]$ that sends x to ω is surjective. Let me show that φ has kernel
$\left(x^{2}+x+1\right)$, namely, if $f \in \mathbf{Z}[x]$ is a polynomial such that $f(\omega)=0$ as complex numbers, then $x^{2}+x+1 \mid f$. This is because if $\alpha \in \mathbf{C}$ is a complex root for f, then

$$
0=f(\alpha)=\overline{f(\alpha)}=f(\bar{\alpha})^{1}
$$

So $\bar{\alpha}$ is also a complex root for f. We know that ω and $\bar{\omega}$ are the two roots of $x^{2}+x+1$ as $(x-\omega)(x-\bar{\omega})=x^{2}+x+1$. Hence if $f(\omega)=0$, then $f(\bar{\omega})=0$. Viewing f as a polynomial in $\mathbf{C}[x]$, we see that both $(x-\omega)$ and $(x-\bar{\omega})$ divides f. Therefore, $x^{2}+x+1 \mid f$ inside $\mathbf{C}[x]$. With a bit of work one shows that if $\left(x^{2}+x+1\right) \cdot g(x)=f(x)$ in $\mathbf{C}[x]$, then g has integral coefficients, meaning that $x^{2}+x+1 \mid f$ in $\mathbf{Z}[x]$. Hence φ has kernel $\left(x^{2}+x+1\right)$. By the first isomorphism theorem, we have

$$
\mathbf{Z}[x] /\left(x^{2}+x+1\right) \simeq \mathbf{Z}[\omega] .
$$

Given a prime integer p, the prime ideal $(p) \subset \mathbf{Z}[\omega]$ corresponds to the ideal $\left(p+\left(x^{2}+x+1\right)\right)=$ $\left(p, x^{2}+x+1\right) /\left(x^{2}+x+1\right) \subset \mathbf{Z}[x] /\left(x^{2}+x+1\right)$. Observing that $\mathbf{Z} \rightarrow \mathbf{Z} / p$ induces an isomorphism

$$
\mathbf{Z}[x] / p \simeq(\mathbf{Z} / p)[x]
$$

and using the third isomorphism theorem, we get that

$$
\begin{aligned}
\mathbf{Z}[\omega] /(p) & \simeq\left(\mathbf{Z}[x] /\left(x^{2}+x+1\right)\right) /\left(\left(p, x^{2}+x+1\right) /\left(x^{2}+x+1\right)\right) \\
& \simeq \mathbf{Z}[x] /\left(p, x^{2}+x+1\right) \\
& \simeq(\mathbf{Z}[x] / p) /\left(\left(p, x^{2}+x+1\right) / p\right) \\
& \simeq(\mathbf{Z} / p)[x] /\left(x^{2}+x+1\right) .
\end{aligned}
$$

By step 3, Z $[\omega]$ is a PID. Hence $p \subset \mathbf{Z}[\omega]$ is irreducible if and only if $(p) \subset \mathbf{Z}[\omega]$ is maximal if and only if $\mathbf{Z}[\omega] /(p)$ is a field. By the fact that $\mathbf{Z}[\omega] /(p) \simeq(\mathbf{Z} / p)[x] /\left(x^{2}+x+1\right)$, this is equivalent to that $\left(x^{2}+x+1\right) \subset(\mathbf{Z} / p)[x]$ is a maximal ideal. But $(\mathbf{Z} / p)[x]$ is a PID, hence this is equivalent to that $x^{2}+x+1$ is irreducible in $(\mathbf{Z} / p)[x]$.

Step 6: Problem 7.6(a).
Suppose $x^{2}+x+1$ has a root α in \mathbf{Z} / p, then

$$
\alpha^{3}-1=(\alpha-1) \cdot\left(\alpha^{2}+\alpha+1\right)=0 .
$$

Since $p \neq 3, \alpha \neq 1$. Therefore the order of α is three. The order of α divides the order of the multiplicative group $(\mathbf{Z} / p)^{\times}$, which has order $p-1$. Therefore, $3 \mid p-1$. Conversely, if $3 \mid p-1$, say $3 k=p-1$, then

$$
x^{p-1}-1=\left(x^{\frac{p-1}{3}}-1\right)\left(x^{\frac{2(p-1)}{3}}+x^{\frac{p-1}{3}}+1\right) .
$$

But we know $x^{p-1}-1$ factors into distinct linear polynomials in \mathbf{Z} / p. Since $(\mathbf{Z} / p)[x]$ is a UFD, some linear factor of $x^{p-1}-1$ divides $x^{\frac{2(p-1)}{3}}+x^{\frac{p-1}{3}}+1$, meaning that there is an $\alpha \in \mathbf{Z} / p$ such that $\alpha^{\frac{2(p-1)}{3}}+\alpha^{\frac{p-1}{3}}+1=0$ in \mathbf{Z} / p. Let $\beta=\alpha^{\frac{p-1}{3}}$, we see that $x^{2}+x+1$ has a root β in \mathbf{Z} / p.

[^0]Step 7: Problem 7.6(c)
Suppose $p=\alpha \cdot \beta$ where both α and β are not units in $\mathbf{Z}[\omega]$. Then

$$
p^{2}=N(p)=N(\alpha) N(\beta) .
$$

By step $4, N(\alpha), N(\beta)>1$. So we can only have $N(\alpha)=N(\beta)=p$. Then $p=a^{2}-a b+b^{2}$ for some integers a, b. Conversely, if $p=a^{2}-a b+b^{2}$, then $p=(a+b \omega) \cdot(a+b \bar{\omega})=$ $(a+b \omega) \cdot(a-b-b \omega)$. Since $N(a-b \omega)=N(a+b \bar{\omega})=p>1$, we see that both $a+b \omega$ and $a+b \bar{\omega}$ are not units. Hence p factors in $\mathbf{Z}[\omega]$.

- Problem 7.8

See Theorem 9.10 of http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes. pdf.

[^0]: ${ }^{1}$ Make sure you understand where integrality of f is used! In fact, we only need that f has real coefficients.

