MATH 403 Winter 2018 Homework 7 Winter 2018

• Problem 2

1. One checks that the norm $N(a + bi) = a^2 + b^2$ satisfies the property that if $N(\alpha)$ is a prime integer, then α is irreducible in $\mathbf{Z}[i]$. Writing an integer $n = a^2 + b^2$ as a sum of two squares yields a factorization $n = (a + bi) \cdot (a - bi)$ in $\mathbf{Z}[i]$. Here $13 = 3^2 + 2^2$ and $17 = 1^2 + 4^2$. Hence

$$13 = (3 + 2i)(3 - 2i)$$

$$17 = (1 + 4i)(1 - 4i)$$

Then as was noted above, $3 \pm 2i$ and $1 \pm 4i$ has prime norm. This shows that the two factorizations I just wrote down are the factorizations of 13 and 17 into irreducible factors.

2.

$$221 = 13 \cdot 17 = (3+2i)(3-2i) \cdot (1+4i)(1-4i) = (3+2i)(1+4i) \cdot (3-2i)(1-4i)$$
$$= (-5+14i) \cdot (-5-14i) = 5^2 + 14^2$$

On the other hand we have $221 = (3+2i)(1-4i) \cdot (3-2i)(1+4i) = 11^2 + 10^2$.

• Problem 3 and 6

Four properties of ω will be used:

$$-\omega = \frac{-1}{2} + \frac{\sqrt{3}}{2}i;$$

$$-\omega^2 + \omega + 1 = 0$$

$$-\omega \cdot \bar{\omega} = 1 \text{ and}$$

$$-\omega + \bar{\omega} = -1$$

Step 1: A better description of $\mathbf{Z}[\omega]$.

By property 2, $a + b\omega + c\omega^2 = (a - c) + (b - c)\omega$. Hence every element in $\mathbb{Z}[\omega]$ can be written as $a + b\omega$ for some $a, b \in \mathbb{Z}$. I claim that such expression is actually unique. For this, if $a + b\omega = a' + b'\omega$, then using the first property, we get

$$a - \frac{b}{2} + \frac{\sqrt{3}b}{2}i = a' - \frac{b'}{2} + \frac{\sqrt{3}b'}{2}i.$$

Comparing the real and imaginary parts, we conclude that

$$a - \frac{b}{2} = a' - \frac{b'}{2}$$
$$\frac{\sqrt{3}b}{2} = \frac{\sqrt{3}b'}{2}$$

Hence a = a' and b = b'.

Step 2: Define a multiplicative norm N on $\mathbf{Z}[\omega]$. Inspired by our previous experiences of constructing norms, one naturally tries (and pray)

$$N(a+b\omega) := (a+b\omega) \cdot \overline{(a+b\omega)}.$$

Since $\overline{a+b\omega} = a + b\overline{\omega}$, with property 3 and 4 of ω , we have

$$(a+b\omega)\cdot(a+b\bar{\omega}) = a^2 - ab + b^2.$$

Since this is just the complex norm of $a + b\omega$, the function N is multiplicative. Moreover this also implies $N(a + b\omega)$ is non-negative. One can also check this by looking at the discriminant of the quadric $a^2 - ab + b^2$. For example, for every fixed $b \in \mathbb{Z}$, the discriminant D(b) is $b^2 - 4b^2 = -3b^2$. So when b = 0, the norm is a^2 , which is non-negative. When $b \neq 0$, D(b) < 0 so $a^2 - ab + b^2$ is either positive or negative as a function in a. Plugging in a = 0, we get a positive value so $a^2 - ab + b^2$ is strictly greater than zero as a function of a with a fixed non-zero b.

Step 3: Check that N we just defined is a Euclidean norm.

 $\mathbf{Z}[\omega] \subset \mathbf{C}$ is a subring. Hence $\mathbf{Z}[\omega]$ is an integral domain. N is non-negative as we have seen. The main task is to show that for any $a + b\omega$ and $c + d\omega$, either $c + d\omega|a + b\omega$ or there exist $m + n\omega$ and $r + s\omega$ such that

$$a + b\omega = (m + n\omega) \cdot (c + d\omega) + r + s\omega$$

with $N(r + s\omega) < N(c + d\omega)$. Suppose $c + d\omega$ does not divide $a + b\omega$. Then in **C**, with property 4 of ω we have

$$\frac{a+b\omega}{c+d\omega} = \frac{(a+b\omega)(c+d\bar{\omega})}{(c+d\omega)(c+d\bar{\omega})} = \frac{ac+bd-ad}{N(c+d\omega)} + \frac{bc-ad}{N(c+d\omega)}\omega$$

Let $\alpha = \frac{ac+bd-ad}{N(c+d\omega)}$ and $\beta = \frac{bc-ad}{N(c+d\omega)}$. Choosing $m, n \in \mathbb{Z}$ such that $|m-\alpha| \leq \frac{1}{2}$ and $|n-\beta| \leq \frac{1}{2}$, we have

$$a + b\omega = (c + d\omega)(m + n\omega) + (c + d\omega)(\alpha - m + (\beta - n)\omega).$$

Since $a + b\omega$ and $(c + d\omega)(m + n\omega) \in \mathbf{Z}[\omega]$, $(c + d\omega)(m - \alpha + (n - \beta)\omega) \in \mathbf{Z}[\omega]$. Set $r + s\omega = (c + d\omega)\alpha - m + (\beta - n)\omega$. Then to prove $N(r + s\omega) < N(c + d\omega)$, it is sufficient to prove that the complex norm $|\alpha - m + (\beta - n)\omega| < 1$. But this follows from our choice of m and n. So far we have done problem 3.

Step 4: Compute the units of $\mathbf{Z}[\omega]$. I claim that $\alpha \in \mathbf{Z}[\omega]$ is a unit if and only if $N(\alpha) = 1$. If α is a unit, then

$$1 = N(1) = N(\alpha \cdot \alpha^{-1}) = N(\alpha)N(\alpha^{-1}).$$

Since N is non-negative, we see that $N(\alpha) = 1$. But $1 = a^2 - ab + b^2$ only when $(a, b) = (\pm 1, 0), (0, \pm 1), (1, 1), (-1, -1)$. We see that the possible choices of a unit is $\pm 1, \pm \omega, 1 + \omega$ and $-1 - \omega$. One easily checks that these are units. Therefore the claim is proved.

Step 5: 7.6(a) \iff 7.6(b) The ring map $\varphi : \mathbf{Z}[x] \to \mathbf{Z}[\omega]$ that sends x to ω is surjective. Let me show that φ has kernel $(x^2 + x + 1)$, namely, if $f \in \mathbb{Z}[x]$ is a polynomial such that $f(\omega) = 0$ as complex numbers, then $x^2 + x + 1|f$. This is because if $\alpha \in \mathbb{C}$ is a complex root for f, then

$$0 = f(\alpha) = \overline{f(\alpha)} = f(\bar{\alpha})^1.$$

So $\bar{\alpha}$ is also a complex root for f. We know that ω and $\bar{\omega}$ are the two roots of $x^2 + x + 1$ as $(x - \omega)(x - \bar{\omega}) = x^2 + x + 1$. Hence if $f(\omega) = 0$, then $f(\bar{\omega}) = 0$. Viewing f as a polynomial in $\mathbb{C}[x]$, we see that both $(x - \omega)$ and $(x - \bar{\omega})$ divides f. Therefore, $x^2 + x + 1|f$ inside $\mathbb{C}[x]$. With a bit of work one shows that if $(x^2 + x + 1) \cdot g(x) = f(x)$ in $\mathbb{C}[x]$, then g has integral coefficients, meaning that $x^2 + x + 1|f$ in $\mathbb{Z}[x]$. Hence φ has kernel $(x^2 + x + 1)$. By the first isomorphism theorem, we have

$$\mathbf{Z}[x]/(x^2 + x + 1) \simeq \mathbf{Z}[\omega].$$

Given a prime integer p, the prime ideal $(p) \subset \mathbf{Z}[\omega]$ corresponds to the ideal $(p+(x^2+x+1)) = (p, x^2 + x + 1)/(x^2 + x + 1) \subset \mathbf{Z}[x]/(x^2 + x + 1)$. Observing that $\mathbf{Z} \twoheadrightarrow \mathbf{Z}/p$ induces an isomorphism

$$\mathbf{Z}[x]/p \simeq (\mathbf{Z}/p)[x]$$

and using the third isomorphism theorem, we get that

$$\begin{aligned} \mathbf{Z}[\omega]/(p) \simeq & (\mathbf{Z}[x]/(x^2+x+1))/((p,x^2+x+1)/(x^2+x+1)) \\ \simeq & \mathbf{Z}[x]/(p,x^2+x+1) \\ \simeq & (\mathbf{Z}[x]/p)/((p,x^2+x+1)/p) \\ \simeq & (\mathbf{Z}/p)[x]/(x^2+x+1). \end{aligned}$$

By step 3, $\mathbf{Z}[\omega]$ is a PID. Hence $p \subset \mathbf{Z}[\omega]$ is irreducible if and only if $(p) \subset \mathbf{Z}[\omega]$ is maximal if and only if $\mathbf{Z}[\omega]/(p)$ is a field. By the fact that $\mathbf{Z}[\omega]/(p) \simeq (\mathbf{Z}/p)[x]/(x^2 + x + 1)$, this is equivalent to that $(x^2 + x + 1) \subset (\mathbf{Z}/p)[x]$ is a maximal ideal. But $(\mathbf{Z}/p)[x]$ is a PID, hence this is equivalent to that $x^2 + x + 1$ is irreducible in $(\mathbf{Z}/p)[x]$.

Step 6: Problem 7.6(a). Suppose $x^2 + x + 1$ has a root α in \mathbb{Z}/p , then

$$\alpha^{3} - 1 = (\alpha - 1) \cdot (\alpha^{2} + \alpha + 1) = 0.$$

Since $p \neq 3$, $\alpha \neq 1$. Therefore the order of α is three. The order of α divides the order of the multiplicative group $(\mathbf{Z}/p)^{\times}$, which has order p-1. Therefore, 3|p-1. Conversely, if 3|p-1, say 3k = p-1, then

$$x^{p-1} - 1 = (x^{\frac{p-1}{3}} - 1)(x^{\frac{2(p-1)}{3}} + x^{\frac{p-1}{3}} + 1).$$

But we know $x^{p-1} - 1$ factors into distinct linear polynomials in \mathbb{Z}/p . Since $(\mathbb{Z}/p)[x]$ is a UFD, some linear factor of $x^{p-1} - 1$ divides $x^{\frac{2(p-1)}{3}} + x^{\frac{p-1}{3}} + 1$, meaning that there is an $\alpha \in \mathbb{Z}/p$ such that $\alpha^{\frac{2(p-1)}{3}} + \alpha^{\frac{p-1}{3}} + 1 = 0$ in \mathbb{Z}/p . Let $\beta = \alpha^{\frac{p-1}{3}}$, we see that $x^2 + x + 1$ has a root β in \mathbb{Z}/p .

¹Make sure you understand where integrality of f is used! In fact, we only need that f has real coefficients.

Step 7: Problem 7.6(c)

Suppose $p = \alpha \cdot \beta$ where both α and β are not units in $\mathbf{Z}[\omega]$. Then

$$p^2 = N(p) = N(\alpha)N(\beta)$$

By step 4, $N(\alpha), N(\beta) > 1$. So we can only have $N(\alpha) = N(\beta) = p$. Then $p = a^2 - ab + b^2$ for some integers a, b. Conversely, if $p = a^2 - ab + b^2$, then $p = (a + b\omega) \cdot (a + b\overline{\omega}) = (a + b\omega) \cdot (a - b - b\omega)$. Since $N(a - b\omega) = N(a + b\overline{\omega}) = p > 1$, we see that both $a + b\omega$ and $a + b\overline{\omega}$ are not units. Hence p factors in $\mathbb{Z}[\omega]$.

• Problem 7.8

See Theorem 9.10 of http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/Zinotes.pdf.