Midterm 2

Modern Algebra (Math 403)
Instructor: Jarod Alper
Winter 2018
February 23, 2018

Name:

Read all of the following information before starting the exam:

- You may not consult any outside sources (calculator, phone, computer, textbook, notes, other students, ...) to assist in answering the exam problems. All of the work will be your own!
- Write clearly!! You need to write your solutions carefully and clearly in order to convince me that your solution is correct. Partial credit will be awarded.
- Good luck!

Problem	Points	
1	$(25$ points $)$	-
2	$(25$ points $)$	-
3	$(25$ points $)$	-
4	$(25$ points $)$	
Total	$(100$ points $)$	

Problem 1. As always, make sure your answers are fully justified.
(a) If p is a prime integer, is the polynomial $f(x)=x^{p}-p \in \mathbb{Q}[x]$ irreducible?

Solution: Since p is a prime such that (1) p does not divide the leading coefficient of $f,(2) p$ divides all coefficients of f other than the leading coefficient and (3) p^{2} does not divide the constant term, we may apply Eisenstein's criterion to conclude that $f(x)$ is irreducible.
(b) Is the polynomial $f(x)=x^{4}+3 x+1 \in \mathbb{Q}[x]$ irreducible?

Solution: By Gauss's lemma, if $f(x) \in \mathbb{Q}[x]$ is reducible, then $f(x)$ has a factorization over $\mathbb{Z}[x]$ as a product of non-constant polynomials in $\mathbb{Z}[x]$. This in turn implies that for every prime integer $p \in \mathbb{Z}$, the image of $f(x)$ under the ring homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z} / p[x]$ is also reducible (Homework Problem 5.6). If we take $p=2$, then the image of f in $\mathbb{Z} / 2[x]$ is $\bar{f}(x)=x^{4}+x+1$. Since $\bar{f}(0)=\bar{f}(1)=1, \bar{f}$ has no linear factors. On the other hand, the only irreducible polynomial in $\mathbb{Z} / 2[x]$ of degree 2 is $x^{2}+x+1$ and this polynomial does not divide \bar{f} (indeed, using the division algorithm, we compute that $\left.\bar{f}(x)=\left(x^{2}+x+1\right)\left(x^{2}+x\right)+1\right)$. Since $\bar{f} \in \mathbb{Z}[x]$ has no linear or quadratic factors, $\bar{f} \in \mathbb{Z} / 2[x]$ is irreducible and we may conclude that $f \in \mathbb{Q}[x]$ is irreducible.

Problem 2.

(a) Show that there exists an irreducible polynomial $f \in \mathbb{Z} / 2[x]$ of degree 4 .

Solution: In Problem 1(b), we saw that $f(x)=x^{4}+x+1 \in \mathbb{Z} / 2[x]$ is irreducible.
(b) Show that there exists a finite field with 16 elements.

Solution: Since $\mathbb{Z} / 2[x]$ is a PID and $f(x)=x^{4}+x+1 \in \mathbb{Z} / 2[x]$ is irreducible, we know from lecture that the ideal $(f) \subset \mathbb{Z} / 2[x]$ is maximal. Therefore $\mathbb{Z} / 2[x] /(f)$ is a field with 16 elements.

Problem 3.

(a) Let p be a prime integer. Find a factorization of $x^{p}-x \in \mathbb{Z} / p[x]$ as a product of irreducible polynomials.

Solution: Let $f(x)=x^{p}-x \in \mathbb{Z} / p[x]$. Fermat's Little Theorem states that $a^{p} \equiv a \bmod p$ for any integer a. In other words, for every element $\alpha \in \mathbb{Z} / p$, $f(\alpha)=0$ or equivalently $x-\alpha$ divides f. The elements $x-\alpha \in \mathbb{Z} / p[x]$ are pairwise relatively prime and therefore the product $\prod_{\alpha \in \mathbb{Z} / p}(x-\alpha)$ also divides $x^{p}-x$, but since this product has the same degree and same leading term as the polynomial f, we conclude that

$$
f(x)=\prod_{\alpha \in \mathbb{Z} / p}(x-\alpha)
$$

and this is the desired factorization since each polynomial $x-\alpha$ is irreducible for $\alpha \in \mathbb{Z} / p$.
(b) Find a factorization of $5 \in \mathbb{Z}[i]$ as a product of irreducible elements.

Solution: Clearly, we have that $5=(2+i)(2-i)$. It remains to show that both $2+i$ and $2-i$ are irreducible elements in $\mathbb{Z}[i]$. For a complex number $z=a+b i$, the square of the modulus of z is $|z|^{2}=a^{2}+b^{2}$. Suppose $2+i=x y$ with $x, y \in \mathbb{Z}[i]$. Then $5=|2+i|^{2}=|x|^{2}|y|^{2}$. Since 5 is prime, either $|x|$ or $|y|$ must be 1. It follows that either x or y is a unit. Thus, $2+i$ is irreducible. The identical argument shows that $2-i$ is irreducible since $|2-i|^{2}$ is also 5 .

Problem 4. Show that $\mathbb{Z}[\sqrt{-2}]$ is a UFD.
Solution: It suffices to show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain since we may use the theorem in lecture that any Euclidean domain is a UFD. First, clearly $\mathbb{Z}[\sqrt{-2}]$ is an integral domain as it is a subring of the complex numbers. Consider the function

$$
N: \mathbb{Z}[\sqrt{-2}] \rightarrow \mathbb{Z}_{\geq 0}, \quad a+b \sqrt{-2} \mapsto a^{2}+2 b^{2}
$$

Clearly, $N(0)=0$. We need to show that for any elements $x, y \in \mathbb{Z}[\sqrt{-2}]$ with $y \neq 0$, then there exists $q, r \in \mathbb{Z}[\sqrt{-2}]$ such that $x=q y+r$ and with $N(r)<N(q)$.

Write $x=a+b \sqrt{-2}$ and $y=c+d \sqrt{-2}$. As elements in \mathbb{C}, we can write

$$
\frac{x}{y}=\frac{a+b \sqrt{-2}}{c+d \sqrt{-2}}=\frac{a+b \sqrt{-2}}{c+d \sqrt{-2}} \cdot\left(\frac{c-d \sqrt{-2}}{c-d \sqrt{-2}}\right)=\left(\frac{a c+b d}{N(y)}\right)+\left(\frac{b c-a d}{N(y)}\right) \sqrt{-2}
$$

Choose integers e, f such that $\left|\frac{a c+b d}{N(y)}-e\right| \leq \frac{1}{2}$ and $\left|\frac{b c-a d}{N(y)}-f\right| \leq \frac{1}{2}$. Then

$$
\begin{aligned}
\left|\frac{x}{y}-(e+f \sqrt{-2})\right|^{2} & =\left|\left(\frac{a c+b d}{N(y)}-e\right)+\left(\frac{b c-a d}{N(y)}-f\right) \sqrt{-2}\right|^{2} \\
& =\left(\frac{a c+b d}{N(y)}-e\right)^{2}+2\left(\frac{b c-a d}{N(y)}-f\right)^{2} \\
& \leq\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)^{2}=\frac{3}{4} \\
& <1
\end{aligned}
$$

Let $q=e+f \sqrt{-2}$ and $r=x-q y$. Then clearly we have that $x=q y+r$. Moreover,

$$
N(r)=N(q y-x)=|x-q y|^{2}=|y|^{2} \cdot\left|\frac{x}{y}-q\right|^{2}<|y|^{2}=N(y)
$$

This shows that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

