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Name: ︸ ︷︷ ︸

Read all of the following information before starting the exam:

• You may not consult any outside sources (calculator, phone, computer,
textbook, notes, other students, ...) to assist in answering the exam
problems. All of the work will be your own!

• Write clearly!! You need to write your solutions carefully and clearly in
order to convince me that your solution is correct. Partial credit will be
awarded.

• Good luck!

Problem Points

1 (25 points)

2 (25 points)

3 (25 points)

4 (25 points)

Total (100 points)

1



Problem 1. As always, make sure your answers are fully justified.

(a) If p is a prime integer, is the polynomial f(x) = xp − p ∈ Q[x] irreducible?

Solution: Since p is a prime such that (1) p does not divide the leading
coefficient of f , (2) p divides all coefficients of f other than the leading
coefficient and (3) p2 does not divide the constant term, we may apply
Eisenstein’s criterion to conclude that f(x) is irreducible.

(b) Is the polynomial f(x) = x4 + 3x+ 1 ∈ Q[x] irreducible?

Solution: By Gauss’s lemma, if f(x) ∈ Q[x] is reducible, then f(x) has a
factorization over Z[x] as a product of non-constant polynomials in Z[x]. This
in turn implies that for every prime integer p ∈ Z, the image of f(x) under
the ring homomorphism Z[x]→ Z/p[x] is also reducible (Homework Problem
5.6). If we take p = 2, then the image of f in Z/2[x] is f(x) = x4 + x + 1.
Since f(0) = f(1) = 1, f has no linear factors. On the other hand, the only
irreducible polynomial in Z/2[x] of degree 2 is x2 + x+ 1 and this polynomial
does not divide f (indeed, using the division algorithm, we compute that
f(x) = (x2 + x+ 1)(x2 + x) + 1). Since f ∈ Z[x] has no linear or quadratic
factors, f ∈ Z/2[x] is irreducible and we may conclude that f ∈ Q[x] is
irreducible.



Problem 2.

(a) Show that there exists an irreducible polynomial f ∈ Z/2[x] of degree 4.

Solution: In Problem 1(b), we saw that f(x) = x4 + x + 1 ∈ Z/2[x] is
irreducible.

(b) Show that there exists a finite field with 16 elements.

Solution: Since Z/2[x] is a PID and f(x) = x4 +x+ 1 ∈ Z/2[x] is irreducible,
we know from lecture that the ideal (f) ⊂ Z/2[x] is maximal. Therefore
Z/2[x]/(f) is a field with 16 elements.



Problem 3.

(a) Let p be a prime integer. Find a factorization of xp − x ∈ Z/p[x] as a product
of irreducible polynomials.

Solution: Let f(x) = xp − x ∈ Z/p[x]. Fermat’s Little Theorem states that
ap ≡ a mod p for any integer a. In other words, for every element α ∈ Z/p,
f(α) = 0 or equivalently x− α divides f . The elements x− α ∈ Z/p[x] are
pairwise relatively prime and therefore the product

∏
α∈Z/p(x−α) also divides

xp − x, but since this product has the same degree and same leading term as
the polynomial f , we conclude that

f(x) =
∏

α∈Z/p

(x− α)

and this is the desired factorization since each polynomial x− α is irreducible
for α ∈ Z/p.

(b) Find a factorization of 5 ∈ Z[i] as a product of irreducible elements.

Solution: Clearly, we have that 5 = (2 + i)(2− i). It remains to show that
both 2 + i and 2− i are irreducible elements in Z[i]. For a complex number
z = a+ bi, the square of the modulus of z is |z|2 = a2 + b2. Suppose 2+ i = xy
with x, y ∈ Z[i]. Then 5 = |2 + i|2 = |x|2|y|2. Since 5 is prime, either |x| or
|y| must be 1. It follows that either x or y is a unit. Thus, 2 + i is irreducible.
The identical argument shows that 2− i is irreducible since |2− i|2 is also 5.



Problem 4. Show that Z[
√
−2] is a UFD.

Solution: It suffices to show that Z[
√
−2] is a Euclidean domain since we may

use the theorem in lecture that any Euclidean domain is a UFD. First, clearly
Z[
√
−2] is an integral domain as it is a subring of the complex numbers. Consider

the function
N : Z[

√
−2]→ Z≥0, a+ b

√
−2 7→ a2 + 2b2.

Clearly, N(0) = 0. We need to show that for any elements x, y ∈ Z[
√
−2] with

y 6= 0, then there exists q, r ∈ Z[
√
−2] such that x = qy+r and with N(r) < N(q).

Write x = a+ b
√
−2 and y = c+ d

√
−2. As elements in C, we can write

x

y
=
a+ b

√
−2

c+ d
√
−2

=
a+ b

√
−2

c+ d
√
−2
·
(
c− d

√
−2

c− d
√
−2

)
=

(
ac+ bd

N(y)

)
+

(
bc− ad
N(y)

)√
−2

Choose integers e, f such that |ac+bdN(y) − e| ≤
1
2 and | bc−adN(y) − f | ≤

1
2 . Then∣∣∣∣xy − (e+ f

√
−2)

∣∣∣∣2 =

∣∣∣∣ (ac+ bd

N(y)
− e
)

+

(
bc− ad
N(y)

− f
)√
−2

∣∣∣∣2
=

(
ac+ bd

N(y)
− e
)2

+ 2

(
bc− ad
N(y)

− f
)2

≤
(

1

2

)2

+ 2

(
1

2

)2

=
3

4

< 1

Let q = e+f
√
−2 and r = x−qy. Then clearly we have that x = qy+r. Moreover,

N(r) = N(qy − x) = |x− qy|2 = |y|2 ·
∣∣∣∣xy − q

∣∣∣∣2 < |y|2 = N(y).

This shows that Z[
√
−2] is a Euclidean domain.


