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Lemma 0.1. Let f and g be complex-valued functions defined on a domain E, and a ∈ E that is not an
isolated point of E. Suppose limz→a f(z) = L and limz→a g(z) = L′, then limz→a f(z) + g(z) = L+ L′.

Proof. Let ε > 0 be given, by definition there exists δ1, δ2 > 0 such that |f(z)− L| < ε/2 whenever
|z − a| < δ1 and |g(z)− L′| < ε/2 whenever |z − a| < δ2. Define δ := min{δ1, δ2}, then if |z − a| < δ, we
may use triangle inequality:

|(f(z) + g(z))− (L+ L′)| ≤ |f(z)− L|+ |g(z)− L′| < ε/2 + ε/2 = ε.

This proves limz→a f(z) + g(z) = L+ L′.

Problem 3.1. Let E ⊂ C be an open set and f : E → C be a function. If f is differentiable at a point
z ∈ E, show that f is also continuous at z.

Proof 1. (ε-δ proof) Since f is differentiable at z, by definition for any ε > 0, we can find δ > 0 such that∣∣∣∣f(w)− f(z)

w − z
− f ′(z)

∣∣∣∣ < ε whenever |w − z| < δ.

Since |w − z| ≥ 0, multiplying both sides of the inequality |(f(w)− f(z))/(w − z)− f ′(z)| < ε by |w − z|
gives us

|w − z|
∣∣∣∣f(w)− f(z)

w − z
− f ′(z)

∣∣∣∣ < |w − z| ε.
Since |αβ| = |α| |β| for any α, β ∈ C, the inequality above is equivalent to

|f(w)− f(z)− f ′(z)(w − z)| < |w − z| ε.

By the triangle inequality, we have

|f(w)− f(z)| − |w − z| |f ′(z)| ≤ |f(w)− f(z)− f ′(z)(w − z)| .

Therefore together we have

|f(w)− f(z)| ≤ |w − z| |f ′(z)|+ |f(w)− f(z)− f ′(z)(w − z)| < |w − z| (|f ′(z)|+ ε).

Now let ε′ > 0 be given, we want to show there exists δ′ > 0 such that |f(w)− f(z)| < ε′ whenever
|w − z| < δ′. By the argument above, if we put ε := min{ε′/2 |f ′(z)| ,

√
ε′/2}, then we may pick δ > 0 such

that
|f(w)− f(z)| < |w − z| (|f ′(z)|+ ε) whenever |w − z| < δ.

We then set δ′ := min{δ, ε}. Then if |w − z| < δ′,

|f(w)− f(z)| < δ′(|f ′(z)|+ ε) ≤ ε |f ′(z)|+ ε2 ≤ ε′/2 + ε′/2 = ε′.

This proves f is continuous at z.
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Proof 2. (using the other characterization of differentiability) Since f is differentiable at z, there exists
f ′(z) ∈ C and a function ε(λ) such that we may write

f(z + λ)− f(z) = f ′(z)λ+ ε(λ),

and limλ→0 ε(λ)/λ = 0. Therefore,

lim
λ→0
|f(z + λ)− f(z)| = lim

λ→0
|λ|
∣∣∣∣f ′(z) +

ε(λ)

λ

∣∣∣∣ .
Since limλ→0 ε(λ)/λ = 0, by Lemma 0.1, limλ→0 f

′(z)+ ε(λ)/λ = f ′(z). Therefore limλ→0 |f ′(z) + ε(λ)/λ| =
|f ′(z)|. Since in addition limλ→0 |λ| = 0, it follows

lim
λ→0
|λ|
∣∣∣∣f ′(z) +

ε(λ)

λ

∣∣∣∣ = 0,

which proves f is continuous at z.

Problem 3.2. Prove the product formula: if f and g are complex functions that are differentiable at z,
then fg is differentiable at z with derivative (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

Proof. Since f and g are differentiable at z, there exists f ′(z), g′(z) ∈ C such that

lim
w→z

f(w)− f(z)

w − z
= f ′(z), lim

w→z

g(w)− g(z)

w − z
= g′(z).

By Problem 1, f is also continuous at z, we know limw→z f(w) = f(z). Together with the fact limw→z g(z) =
g(z) and Problem 10 in homework 1, we know

lim
w→z

(f(w)− f(z))g(z)

w − z
= f ′(z)g(z), lim

w→z

(g(w)− g(z))f(w)

w − z
= g′(z)f(z).

We may apply Lemma 0.1 to get

lim
w→z

(f(w)− f(z))g(z) + (g(w)− g(z))f(w)

w − z
= f ′(z)g(z) + g′(z)f(z).

The limit then simplifies to

lim
w→z

f(w)g(w)− f(z)g(z)

w − z
= f ′(z)g(z) + g′(z)f(z),

which by definition means the function fg is differentiable at z with derivative (fg)′(z) = f ′(z)g(z) +
g′(z)f(z).

Problem 3.3. Use Problem 3.2 and induction to show that

d(zn)

dz
= nzn−1

Proof. We first induction on n ≥ 0.

1. Suppose n = 0, then by direct computation we have the derivative of f(z) = z0 at z is limw→z(1 −
1)/(w − z) = limw→z 0 = 0, which equals the right hand side nzn−1 = 0 · z−1 = 0.

Remark: One could also do the base case with n = 1. In this case, by direct computation we have
the derivative of f(z) = z at z is limw→z(w− z)/(w− z) = limw→z 1 = 1, which equals the right hand
side 1 · z0 = 1.
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2. Suppose n > 1, then by the product formula and the case n = 1 we have

d(zn)

dz
=
d(z · zn−1)

dz
=
d(z)

dz
· zn−1 + z · d(zn−1)

dz
= zn−1 + z · d(zn−1)

dz
.

The inductive hypothesis tells us d(zn−1)/dz = (n − 1)zn−2, we may simplify the equation above to
zn−1 + (n− 1)z · zn−2 = nzn−1. This finishes the induction.

Now let n be a positive integer, since z−n = 1/zn. We use Theorem 2.2.6 to conclude that z−n is
differentiable on C \ {0}, with derivative

d(z−n)

dz
= −nz

n−1

z2n
= (−n)z−n−1.

This proves the statement is true for all integer n, when the derivative exists.

Problem 3.4. Taylor 2.2.8.

Solution: First recall the log function is only defined on the punctured complex plane C \ {0}, hence the
function log(z)/z is only defined on C \ {0}. We would like to analyze if it’s differentiable anywhere on the
set C \ {0}. Observe the function f(z) = z is nonzero and differentiable on the punctured plane C \ {0},
therefore if log(z) is differentiable at z0, so is the function log(z)/z by Theorem 2.2.6(c). By Example 2.2.11
in the book, we know the function log(z) is differentiable everywhere except on its cut line, that is the line
of negative reals. Therefore we conclude the function log(z)/z is differentiable on C \ (−∞, 0] (same in the
book, we use the notation (−∞, 0] to denote the set {x+ iy ∈ C : y = 0, x ≤ 0}).

From Example 2.2.11 we also know the derivative of log(z) at z ∈ C \ (−∞, 0] is 1/z. By Theorem 2.2.6
and Problem 3.3 we conclude the derivative of log(z)/z at z ∈ C \ (−∞, 0] is

(log(z) · z−1)′ = log(z) · −1

z2
+

1

z2
=

1− log(z)

z2
.

�

Problem 3.5. Taylor 2.2.11.

Solution: Let f(z) = u(x, y)+ iv(x, y) where z ∈ x+ iy be a real function defined and analytic on C. Then
v(x, y) = 0 for all z = x+ iy ∈ C. Then by Cauchy-Riemann equations we conclude for all z = x+ iy ∈ C,

ux(x, y) = vy(x, y) = 0, uy(x, y) = −vx(x, y) = 0.

We know from real analysis that a real-valued differentiable function u : R2 → R satisfying above must be
constant. Therefore any real-valued function that is analytic on C is constant. �

Problem 3.6. Taylor 2.2.12.

Proof. Let f = u + iv be a function defined on some domain E that is differentiable at z0 = r0e
iθ0 ∈ E.

Using the change of variable x = r cos θ, y = r sin θ, we may define functions ũ and ṽ defined on those points
(r, θ) with reiθ ∈ E, such that

ũ(r, θ) = u(r cos θ, r sin θ), ṽ(r, θ) = v(r cos θ, r sin θ).

Since the maps φ(r, θ) = r cos θ and ψ(r, θ) = r sin θ are differentiable at all those points (r, θ) such that
reiθ ∈ E. We may apply the chain rule to ũ and ṽ and obtain (the partials of u and v are all evaluated at
(r0 cos θ0, r0 sin θ0) below, and the partials of ṽ and ṽ are evaluated at (r0, θ0)):[

ũr ũθ
]

=
[
ux uy

] [cos θ0 −r0 sin θ0
sin θ0 r0 cos θ0

]
=
[
ux cos θ0 + uy sin θ0 r0(−ux sin θ0 + uy cos θ0)

]
[
ṽr ṽθ

]
=
[
vx vy

] [cos θ0 −r0 sin θ0
sin θ0 r0 cos θ0

]
=
[
vx cos θ0 + vy sin θ0 r0(−vx sin θ0 + vy cos θ0)

]
.
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Since f = u+iv is differentiable at z0, the Cauchy-Riemann equations is satisfied at z0 = r0 cos θ0+ir0 sin θ0:

ux = vy, uy = −vx.

Substitute these into the four relations above, we obtain

r0ũr(r0, θ0) = r0ux cos θ0 + r0uy sin θ0 = r0vy cos θ0 − r0ux sin θ0 = ṽθ,

and
ũθ(r0, θ0) = r0(−vy sin θ0 − vx cos θ0) = (−r0)ṽr.

Which is the desired result if r0 6= 0.

Problem 3.7. Taylor 2.2.13.

Proof. We consider the log function in the branch I = (a, a+2π]. After the change of coordinate x = r cos θ
and y = r sin θ, we have logI(r, θ) = u(r, θ) + iv(r, θ) = log(r) + iθ. Observe u and v are differentiable for
r 6= 0 and θ ∈ (a, a+2π). We would like to prove the Cauchy-Riemann equations for polar coordinates holds
for log(r, θ) for r 6= 0 and θ ∈ (a, a+ 2π). Direct computation of the partial derivatives of u and v yields

ur(r, θ) = 1/r, uθ(r, θ) = 0

vr(r, θ) = 0, vθ(r, θ) = 1.

This tells us the Cauchy-Riemann equations are satisfied for all z = reiθ where θ ∈ (a, a + 2π) and r 6= 0.
Therefore the usual Cauchy-Riemann equations are satisfied for log(z) on the complex plane besides the cut
line and the origin. We conclude the log function is analytic on the complex plane with its cut line and the
origin removed.

Problem 3.8. Taylor 2.2.15.

Proof. Write f as f(z) = u(x, y) + iv(x, y) where z = x + iy, then g(z) = ũ(x, y) + iṽ(x, y) = u(x,−y) −
iv(x,−y) where z = x+ iy. Let z0 = x0 + iy0 ∈ U be given, we would like to show g is differentiable at z0.
We first obverse ũ(x0,−y0) = u(x0, y0) and ṽ(x0,−y0) = −ṽ(x0, y0), therefore ũ and ṽ are both differentiable
at z0. Computing the partial derivatives of ũ and ṽ using chain rule yields,

ũx(x0,−y0) =
∂u(x,−y)

∂x
(x0,−y0) = ux(x0, y0)

ũy(x0,−y0) =
∂u(x,−y)

∂y
(x0,−y0) = −uy(x0, y0)

ṽx(x0,−y0) =
∂(−v(x,−y))

∂x
(x0,−y0) = −vx(x0, y0)

ṽy(x0,−y0) =
∂(−v(x,−y))

∂y
(x0,−y0) = vy(x0, y0).

Since u and v satisfies the Cauchy-Riemann equations at z0, we also have

ux(x0, y0) = vy(x0, y0), uy(x0, y0) = −vx(x0, y0).

Putting all these relations together, we have

ũx(x0,−y0) = ux(x0, y0) = vy(x0, y0) = ṽy(x0,−y0)

ũy(x0,−y0) = −uy(x0, y0) = vx(x0, y0) = −ṽx(x0,−y0)

as we wished. By Theorem 2.2.9, we may conclude g is differentiable at z0.

Problem 3.9. For each of the following functions of z, express the function in the form u(x, y) + iv(x, y)
where z = x+ iy:

(a) z3 + z3

(b) z2ez

(c) cos(z)
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Solution:

(a) By binomial expansion we have

z3 + z3 = x3 + 3x2(iy) + 3x(iy)2 + (iy)3 + x3 + 3x2(−iy) + 3x(−iy)2 + (−iy)3

= x3 + 3x2(iy)− 3xy2 − iy3 + x3 + 3x2(−iy)− 3xy2 + iy3 = 2x3 − 6xy2.

(b)

z2ez = (x+ iy)2ex+iy = (x2 − y2 + 2ixy)ex(cos y + i sin y)

= ex[(x2 − y2) cos y − 2xy sin y] + iex[2xy cos y + (x2 − y2) sin y]

(c)

cos(z) =
1

2
(eiz + e−iz) =

1

2
(e−y+ix + ey−ix)

=
1

2
(e−y cosx+ ey cosx) + i

1

2
(e−y sinx− ey sinx)

�

Problem 3.10. For each Part (a)(c) of Problem 3.9, use the CauchyRiemann equations to determine if the
function is analytic.

Proof.

1. Observe this function is real-valued, and not constant, hence is nowhere analytic by Problem 5.

2. This function is defined everywhere on C, let z = x+ iy be given, by direct computation,

ux = ex[(x2 − y2) cos y − 2xy sin y + 2x cos y − 2y sin y]

uy = ex[−y cos y − (x2 − y2) sin y − 2x sin y − 2xy cos y]

vx = ex[2xy cos y + (x2 − y2) sin y + 2y cos y + 2x sin y]

vy = ex[2x cos y − 2xy sin y − 2y sin y + (x2 − y2) cos y].

It’s easy to see Cauchy-Riemann equations are satisfied, hence z2ez is analytic on the entire complex
plane.

3. This function is defined everywhere on C since both eiz and e−iz are. Let z = x + iy be given, by
direct computation,

ux =
1

2
(−e−y sinx− ey sinx)

uy =
1

2
(−e−y cosx+ ey cosx)

vx =
1

2
(e−y cosx− ey cosx)

vy =
1

2
(−e−y sinx− ey sinx).

Observe Cauchy-Riemann equations are satisfied, hence cos(z) is analytic on the entire complex plane.


