Math 427 Homework \#3 Solutions

Thomas Sixuan Lou

October 22, 2018

Lemma 0.1. Let f and g be complex-valued functions defined on a domain E, and $a \in \bar{E}$ that is not an isolated point of \bar{E}. Suppose $\lim _{z \rightarrow a} f(z)=L$ and $\lim _{z \rightarrow a} g(z)=L^{\prime}$, then $\lim _{z \rightarrow a} f(z)+g(z)=L+L^{\prime}$.

Proof. Let $\epsilon>0$ be given, by definition there exists $\delta_{1}, \delta_{2}>0$ such that $|f(z)-L|<\epsilon / 2$ whenever $|z-a|<\delta_{1}$ and $\left|g(z)-L^{\prime}\right|<\epsilon / 2$ whenever $|z-a|<\delta_{2}$. Define $\delta:=\min \left\{\delta_{1}, \delta_{2}\right\}$, then if $|z-a|<\delta$, we may use triangle inequality:

$$
\left|(f(z)+g(z))-\left(L+L^{\prime}\right)\right| \leq|f(z)-L|+\left|g(z)-L^{\prime}\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

This proves $\lim _{z \rightarrow a} f(z)+g(z)=L+L^{\prime}$.
Problem 3.1. Let $E \subset \mathbb{C}$ be an open set and $f: E \rightarrow \mathbb{C}$ be a function. If f is differentiable at a point $z \in E$, show that f is also continuous at z.

Proof 1. ($\epsilon-\delta$ proof) Since f is differentiable at z, by definition for any $\epsilon>0$, we can find $\delta>0$ such that

$$
\left|\frac{f(w)-f(z)}{w-z}-f^{\prime}(z)\right|<\epsilon \quad \text { whenever } \quad|w-z|<\delta
$$

Since $|w-z| \geq 0$, multiplying both sides of the inequality $\left|(f(w)-f(z)) /(w-z)-f^{\prime}(z)\right|<\epsilon$ by $|w-z|$ gives us

$$
|w-z|\left|\frac{f(w)-f(z)}{w-z}-f^{\prime}(z)\right|<|w-z| \epsilon
$$

Since $|\alpha \beta|=|\alpha||\beta|$ for any $\alpha, \beta \in \mathbb{C}$, the inequality above is equivalent to

$$
\left|f(w)-f(z)-f^{\prime}(z)(w-z)\right|<|w-z| \epsilon
$$

By the triangle inequality, we have

$$
|f(w)-f(z)|-|w-z|\left|f^{\prime}(z)\right| \leq\left|f(w)-f(z)-f^{\prime}(z)(w-z)\right|
$$

Therefore together we have

$$
|f(w)-f(z)| \leq|w-z|\left|f^{\prime}(z)\right|+\left|f(w)-f(z)-f^{\prime}(z)(w-z)\right|<|w-z|\left(\left|f^{\prime}(z)\right|+\epsilon\right)
$$

Now let $\epsilon^{\prime}>0$ be given, we want to show there exists $\delta^{\prime}>0$ such that $|f(w)-f(z)|<\epsilon^{\prime}$ whenever $|w-z|<\delta^{\prime}$. By the argument above, if we put $\epsilon:=\min \left\{\epsilon^{\prime} / 2\left|f^{\prime}(z)\right|, \sqrt{\epsilon^{\prime} / 2}\right\}$, then we may pick $\delta>0$ such that

$$
|f(w)-f(z)|<|w-z|\left(\left|f^{\prime}(z)\right|+\epsilon\right) \quad \text { whenever } \quad|w-z|<\delta
$$

We then set $\delta^{\prime}:=\min \{\delta, \epsilon\}$. Then if $|w-z|<\delta^{\prime}$,

$$
|f(w)-f(z)|<\delta^{\prime}\left(\left|f^{\prime}(z)\right|+\epsilon\right) \leq \epsilon\left|f^{\prime}(z)\right|+\epsilon^{2} \leq \epsilon^{\prime} / 2+\epsilon^{\prime} / 2=\epsilon^{\prime}
$$

This proves f is continuous at z.

Proof 2. (using the other characterization of differentiability) Since f is differentiable at z, there exists $f^{\prime}(z) \in \mathbb{C}$ and a function $\epsilon(\lambda)$ such that we may write

$$
f(z+\lambda)-f(z)=f^{\prime}(z) \lambda+\epsilon(\lambda)
$$

and $\lim _{\lambda \rightarrow 0} \epsilon(\lambda) / \lambda=0$. Therefore,

$$
\lim _{\lambda \rightarrow 0}|f(z+\lambda)-f(z)|=\lim _{\lambda \rightarrow 0}|\lambda|\left|f^{\prime}(z)+\frac{\epsilon(\lambda)}{\lambda}\right| .
$$

Since $\lim _{\lambda \rightarrow 0} \epsilon(\lambda) / \lambda=0$, by Lemma $0.1, \lim _{\lambda \rightarrow 0} f^{\prime}(z)+\epsilon(\lambda) / \lambda=f^{\prime}(z)$. Therefore $\lim _{\lambda \rightarrow 0}\left|f^{\prime}(z)+\epsilon(\lambda) / \lambda\right|=$ $\left|f^{\prime}(z)\right|$. Since in addition $\lim _{\lambda \rightarrow 0}|\lambda|=0$, it follows

$$
\lim _{\lambda \rightarrow 0}|\lambda|\left|f^{\prime}(z)+\frac{\epsilon(\lambda)}{\lambda}\right|=0
$$

which proves f is continuous at z.
Problem 3.2. Prove the product formula: if f and g are complex functions that are differentiable at z, then $f g$ is differentiable at z with derivative $(f g)^{\prime}(z)=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$.

Proof. Since f and g are differentiable at z, there exists $f^{\prime}(z), g^{\prime}(z) \in \mathbb{C}$ such that

$$
\lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z}=f^{\prime}(z), \quad \lim _{w \rightarrow z} \frac{g(w)-g(z)}{w-z}=g^{\prime}(z) .
$$

By Problem 1, f is also continuous at z, we know $\lim _{w \rightarrow z} f(w)=f(z)$. Together with the fact $\lim _{w \rightarrow z} g(z)=$ $g(z)$ and Problem 10 in homework 1, we know

$$
\lim _{w \rightarrow z} \frac{(f(w)-f(z)) g(z)}{w-z}=f^{\prime}(z) g(z), \quad \lim _{w \rightarrow z} \frac{(g(w)-g(z)) f(w)}{w-z}=g^{\prime}(z) f(z)
$$

We may apply Lemma 0.1 to get

$$
\lim _{w \rightarrow z} \frac{(f(w)-f(z)) g(z)+(g(w)-g(z)) f(w)}{w-z}=f^{\prime}(z) g(z)+g^{\prime}(z) f(z)
$$

The limit then simplifies to

$$
\lim _{w \rightarrow z} \frac{f(w) g(w)-f(z) g(z)}{w-z}=f^{\prime}(z) g(z)+g^{\prime}(z) f(z)
$$

which by definition means the function $f g$ is differentiable at z with derivative $(f g)^{\prime}(z)=f^{\prime}(z) g(z)+$ $g^{\prime}(z) f(z)$.

Problem 3.3. Use Problem 3.2 and induction to show that

$$
\frac{d\left(z^{n}\right)}{d z}=n z^{n-1}
$$

Proof. We first induction on $n \geq 0$.

1. Suppose $n=0$, then by direct computation we have the derivative of $f(z)=z^{0}$ at z is $\lim _{w \rightarrow z}(1-$ 1) $/(w-z)=\lim _{w \rightarrow z} 0=0$, which equals the right hand side $n z^{n-1}=0 \cdot z^{-1}=0$.

Remark: One could also do the base case with $n=1$. In this case, by direct computation we have the derivative of $f(z)=z$ at z is $\lim _{w \rightarrow z}(w-z) /(w-z)=\lim _{w \rightarrow z} 1=1$, which equals the right hand side $1 \cdot z^{0}=1$.
2. Suppose $n>1$, then by the product formula and the case $n=1$ we have

$$
\frac{d\left(z^{n}\right)}{d z}=\frac{d\left(z \cdot z^{n-1}\right)}{d z}=\frac{d(z)}{d z} \cdot z^{n-1}+z \cdot \frac{d\left(z^{n-1}\right)}{d z}=z^{n-1}+z \cdot \frac{d\left(z^{n-1}\right)}{d z}
$$

The inductive hypothesis tells us $d\left(z^{n-1}\right) / d z=(n-1) z^{n-2}$, we may simplify the equation above to $z^{n-1}+(n-1) z \cdot z^{n-2}=n z^{n-1}$. This finishes the induction.
Now let n be a positive integer, since $z^{-n}=1 / z^{n}$. We use Theorem 2.2.6 to conclude that z^{-n} is differentiable on $\mathbb{C} \backslash\{0\}$, with derivative

$$
\frac{d\left(z^{-n}\right)}{d z}=-\frac{n z^{n-1}}{z^{2 n}}=(-n) z^{-n-1}
$$

This proves the statement is true for all integer n, when the derivative exists.

Problem 3.4. Taylor 2.2.8.

Solution: First recall the log function is only defined on the punctured complex plane $\mathbb{C} \backslash\{0\}$, hence the function $\log (z) / z$ is only defined on $\mathbb{C} \backslash\{0\}$. We would like to analyze if it's differentiable anywhere on the set $\mathbb{C} \backslash\{0\}$. Observe the function $f(z)=z$ is nonzero and differentiable on the punctured plane $\mathbb{C} \backslash\{0\}$, therefore if $\log (z)$ is differentiable at z_{0}, so is the function $\log (z) / z$ by Theorem 2.2.6(c). By Example 2.2.11 in the book, we know the function $\log (z)$ is differentiable everywhere except on its cut line, that is the line of negative reals. Therefore we conclude the function $\log (z) / z$ is differentiable on $\mathbb{C} \backslash(-\infty, 0]$ (same in the book, we use the notation $(-\infty, 0]$ to denote the set $\{x+i y \in \mathbb{C}: y=0, x \leq 0\})$.

From Example 2.2.11 we also know the derivative of $\log (z)$ at $z \in \mathbb{C} \backslash(-\infty, 0]$ is $1 / z$. By Theorem 2.2.6 and Problem 3.3 we conclude the derivative of $\log (z) / z$ at $z \in \mathbb{C} \backslash(-\infty, 0]$ is

$$
\left(\log (z) \cdot z^{-1}\right)^{\prime}=\log (z) \cdot \frac{-1}{z^{2}}+\frac{1}{z^{2}}=\frac{1-\log (z)}{z^{2}}
$$

Problem 3.5. Taylor 2.2.11.

Solution: Let $f(z)=u(x, y)+i v(x, y)$ where $z \in x+i y$ be a real function defined and analytic on \mathbb{C}. Then $v(x, y)=0$ for all $z=x+i y \in \mathbb{C}$. Then by Cauchy-Riemann equations we conclude for all $z=x+i y \in \mathbb{C}$,

$$
u_{x}(x, y)=v_{y}(x, y)=0, \quad u_{y}(x, y)=-v_{x}(x, y)=0
$$

We know from real analysis that a real-valued differentiable function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying above must be constant. Therefore any real-valued function that is analytic on \mathbb{C} is constant.

Problem 3.6. Taylor 2.2.12.

Proof. Let $f=u+i v$ be a function defined on some domain E that is differentiable at $z_{0}=r_{0} e^{i \theta_{0}} \in E$. Using the change of variable $x=r \cos \theta, y=r \sin \theta$, we may define functions \tilde{u} and \tilde{v} defined on those points (r, θ) with $r e^{i \theta} \in E$, such that

$$
\tilde{u}(r, \theta)=u(r \cos \theta, r \sin \theta), \quad \tilde{v}(r, \theta)=v(r \cos \theta, r \sin \theta)
$$

Since the maps $\phi(r, \theta)=r \cos \theta$ and $\psi(r, \theta)=r \sin \theta$ are differentiable at all those points (r, θ) such that $r e^{i \theta} \in E$. We may apply the chain rule to \tilde{u} and \tilde{v} and obtain (the partials of u and v are all evaluated at $\left(r_{0} \cos \theta_{0}, r_{0} \sin \theta_{0}\right)$ below, and the partials of \tilde{v} and \tilde{v} are evaluated at $\left.\left(r_{0}, \theta_{0}\right)\right)$:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\tilde{u}_{r} & \tilde{u}_{\theta}
\end{array}\right]=\left[\begin{array}{ll}
u_{x} & u_{y}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta_{0} & -r_{0} \sin \theta_{0} \\
\sin \theta_{0} & r_{0} \cos \theta_{0}
\end{array}\right]=\left[\begin{array}{ll}
u_{x} \cos \theta_{0}+u_{y} \sin \theta_{0} & r_{0}\left(-u_{x} \sin \theta_{0}+u_{y} \cos \theta_{0}\right)
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\tilde{v}_{r} & \tilde{v}_{\theta}
\end{array}\right]=\left[\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta_{0} & -r_{0} \sin \theta_{0} \\
\sin \theta_{0} & r_{0} \cos \theta_{0}
\end{array}\right]=\left[\begin{array}{ll}
v_{x} \cos \theta_{0}+v_{y} \sin \theta_{0} & r_{0}\left(-v_{x} \sin \theta_{0}+v_{y} \cos \theta_{0}\right)
\end{array}\right]}
\end{aligned}
$$

Since $f=u+i v$ is differentiable at z_{0}, the Cauchy-Riemann equations is satisfied at $z_{0}=r_{0} \cos \theta_{0}+i r_{0} \sin \theta_{0}$:

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

Substitute these into the four relations above, we obtain

$$
r_{0} \tilde{u}_{r}\left(r_{0}, \theta_{0}\right)=r_{0} u_{x} \cos \theta_{0}+r_{0} u_{y} \sin \theta_{0}=r_{0} v_{y} \cos \theta_{0}-r_{0} u_{x} \sin \theta_{0}=\tilde{v}_{\theta}
$$

and

$$
\tilde{u}_{\theta}\left(r_{0}, \theta_{0}\right)=r_{0}\left(-v_{y} \sin \theta_{0}-v_{x} \cos \theta_{0}\right)=\left(-r_{0}\right) \tilde{v}_{r}
$$

Which is the desired result if $r_{0} \neq 0$.

Problem 3.7. Taylor 2.2.13.

Proof. We consider the log function in the branch $I=(a, a+2 \pi]$. After the change of coordinate $x=r \cos \theta$ and $y=r \sin \theta$, we have $\log _{I}(r, \theta)=u(r, \theta)+i v(r, \theta)=\log (r)+i \theta$. Observe u and v are differentiable for $r \neq 0$ and $\theta \in(a, a+2 \pi)$. We would like to prove the Cauchy-Riemann equations for polar coordinates holds for $\log (r, \theta)$ for $r \neq 0$ and $\theta \in(a, a+2 \pi)$. Direct computation of the partial derivatives of u and v yields

$$
\begin{array}{rc}
u_{r}(r, \theta)=1 / r, & u_{\theta}(r, \theta)=0 \\
v_{r}(r, \theta)=0, & v_{\theta}(r, \theta)=1
\end{array}
$$

This tells us the Cauchy-Riemann equations are satisfied for all $z=r e^{i \theta}$ where $\theta \in(a, a+2 \pi)$ and $r \neq 0$. Therefore the usual Cauchy-Riemann equations are satisfied for $\log (z)$ on the complex plane besides the cut line and the origin. We conclude the log function is analytic on the complex plane with its cut line and the origin removed.

Problem 3.8. Taylor 2.2.15.

Proof. Write f as $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y$, then $g(z)=\tilde{u}(x, y)+i \tilde{v}(x, y)=u(x,-y)-$ $i v(x,-y)$ where $z=x+i y$. Let $z_{0}=x_{0}+i y_{0} \in U$ be given, we would like to show g is differentiable at $\overline{z_{0}}$. We first obverse $\tilde{u}\left(x_{0},-y_{0}\right)=u\left(x_{0}, y_{0}\right)$ and $\tilde{v}\left(x_{0},-y_{0}\right)=-\tilde{v}\left(x_{0}, y_{0}\right)$, therefore \tilde{u} and \tilde{v} are both differentiable at $\overline{z_{0}}$. Computing the partial derivatives of \tilde{u} and \tilde{v} using chain rule yields,

$$
\begin{array}{r}
\tilde{u}_{x}\left(x_{0},-y_{0}\right)=\frac{\partial u(x,-y)}{\partial x}\left(x_{0},-y_{0}\right)=u_{x}\left(x_{0}, y_{0}\right) \\
\tilde{u}_{y}\left(x_{0},-y_{0}\right)=\frac{\partial u(x,-y)}{\partial y}\left(x_{0},-y_{0}\right)=-u_{y}\left(x_{0}, y_{0}\right) \\
\tilde{v}_{x}\left(x_{0},-y_{0}\right)=\frac{\partial(-v(x,-y))}{\partial x}\left(x_{0},-y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) \\
\tilde{v}_{y}\left(x_{0},-y_{0}\right)=\frac{\partial(-v(x,-y))}{\partial y}\left(x_{0},-y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)
\end{array}
$$

Since u and v satisfies the Cauchy-Riemann equations at z_{0}, we also have

$$
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right), \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)
$$

Putting all these relations together, we have

$$
\begin{array}{r}
\tilde{u}_{x}\left(x_{0},-y_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)=\tilde{v}_{y}\left(x_{0},-y_{0}\right) \\
\tilde{u}_{y}\left(x_{0},-y_{0}\right)=-u_{y}\left(x_{0}, y_{0}\right)=v_{x}\left(x_{0}, y_{0}\right)=-\tilde{v}_{x}\left(x_{0},-y_{0}\right)
\end{array}
$$

as we wished. By Theorem 2.2.9, we may conclude g is differentiable at $\overline{z_{0}}$.
Problem 3.9. For each of the following functions of z, express the function in the form $u(x, y)+i v(x, y)$ where $z=x+i y$:
(a) $z^{3}+\bar{z}^{3}$
(b) $z^{2} e^{z}$
(c) $\cos (z)$

Solution:

(a) By binomial expansion we have

$$
\begin{aligned}
z^{3}+\bar{z}^{3} & =x^{3}+3 x^{2}(i y)+3 x(i y)^{2}+(i y)^{3}+x^{3}+3 x^{2}(-i y)+3 x(-i y)^{2}+(-i y)^{3} \\
& =x^{3}+3 x^{2}(i y)-3 x y^{2}-i y^{3}+x^{3}+3 x^{2}(-i y)-3 x y^{2}+i y^{3}=2 x^{3}-6 x y^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
z^{2} e^{z} & =(x+i y)^{2} e^{x+i y}=\left(x^{2}-y^{2}+2 i x y\right) e^{x}(\cos y+i \sin y) \\
& =e^{x}\left[\left(x^{2}-y^{2}\right) \cos y-2 x y \sin y\right]+i e^{x}\left[2 x y \cos y+\left(x^{2}-y^{2}\right) \sin y\right]
\end{aligned}
$$

(c)

$$
\begin{aligned}
\cos (z) & =\frac{1}{2}\left(e^{i z}+e^{-i z}\right)=\frac{1}{2}\left(e^{-y+i x}+e^{y-i x}\right) \\
& =\frac{1}{2}\left(e^{-y} \cos x+e^{y} \cos x\right)+i \frac{1}{2}\left(e^{-y} \sin x-e^{y} \sin x\right)
\end{aligned}
$$

Problem 3.10. For each Part (a)(c) of Problem 3.9, use the CauchyRiemann equations to determine if the function is analytic.

Proof.

1. Observe this function is real-valued, and not constant, hence is nowhere analytic by Problem 5.
2. This function is defined everywhere on \mathbb{C}, let $z=x+i y$ be given, by direct computation,

$$
\begin{aligned}
u_{x} & =e^{x}\left[\left(x^{2}-y^{2}\right) \cos y-2 x y \sin y+2 x \cos y-2 y \sin y\right] \\
u_{y} & =e^{x}\left[-y \cos y-\left(x^{2}-y^{2}\right) \sin y-2 x \sin y-2 x y \cos y\right] \\
v_{x} & =e^{x}\left[2 x y \cos y+\left(x^{2}-y^{2}\right) \sin y+2 y \cos y+2 x \sin y\right] \\
v_{y} & =e^{x}\left[2 x \cos y-2 x y \sin y-2 y \sin y+\left(x^{2}-y^{2}\right) \cos y\right] .
\end{aligned}
$$

It's easy to see Cauchy-Riemann equations are satisfied, hence $z^{2} e^{z}$ is analytic on the entire complex plane.
3. This function is defined everywhere on \mathbb{C} since both $e^{i z}$ and $e^{-i z}$ are. Let $z=x+i y$ be given, by direct computation,

$$
\begin{aligned}
u_{x} & =\frac{1}{2}\left(-e^{-y} \sin x-e^{y} \sin x\right) \\
u_{y} & =\frac{1}{2}\left(-e^{-y} \cos x+e^{y} \cos x\right) \\
v_{x} & =\frac{1}{2}\left(e^{-y} \cos x-e^{y} \cos x\right) \\
v_{y} & =\frac{1}{2}\left(-e^{-y} \sin x-e^{y} \sin x\right)
\end{aligned}
$$

Observe Cauchy-Riemann equations are satisfied, hence $\cos (z)$ is analytic on the entire complex plane.

