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Problem 6.1. Taylor 3.1.2.

Proof. First let k ≥ 0 be fixed, we want to show for any ε > 0 there exists N0 ∈ N such that for all
N > N0 we have |sin(x/N)| < ε for all x ∈ [0, k]. Observe by increasing N , we are stretching up the graph
sin(x) horizontally, hence the idea is to stretch it enough so that for any x ∈ [0, k] the value of the function
sin(x/N) is less than ε.

Formally, let ε > 0 be given. If ε > 1 we are done since we know |sin(x/N)| ≤ 1 for all x. Suppose now
that ε ∈ (0, 1], pick natural number N0 such that N0 > max{k/ arcsin(ε), 2k/π}, since ε ∈ (0, 1], we may
pick the value of the arcsin function from the interval (0, π/2]. Therefore, for any N > N0 and x ∈ [0, k], we
have

N > N0 >
k

arcsin(ε)
>

x

arcsin(ε)
.

Rearranging the inequality we have arcsin(ε) > x/N . Since the sin function is monotonically increasing on
the interval (0, π/2], applying it to both sides of the inequality we obtain ε > sin(x/N). Since N > N0 > 2k/π
and x ∈ [0, k], we know x/N ∈ [0, π/2], hence sin(x/N) ∈ [0, 1], therefore |sin(x/N)| = sin(x/N) < ε. This
shows the sequence of functions {sin(x/n)}n converges uniformly on the interval [0, k].

To show the sequence of functions {sin(x/n)}n does not converge uniformly on [0,∞), we just need to
notice for any n ∈ N, we may pick x := πn/2 ∈ [0,∞) such that sin(x/n) = sin(π/2) = 1, which cannot be
made arbitrarily small.

Problem 6.2. Taylor 3.1.7.

Proof. Let s > 1 be fixed, suppose z = x + iy ∈ C with x > s be given, then for each positive integer
k we have |k−z| = |k−x| /

∣∣kiy∣∣ = |k−x| < |k−s| = k−s. Furthermore by p-series test, the series
∑∞

k=1 k
−s

converges. Therefore it follows from Weierstraß’s M Test that the series
∑∞

k=1 k
−z converges uniformly on

each set of the form {z ∈ C : Re(z) > s}, where s > 1.

Problem 6.3. Taylor 3.1.10.

Solution: We want to compute (
lim sup
k→∞

∣∣2 + (−1)k
∣∣ )−1.

Observe for each positive integer k and n ≥ k, the value (−1)n is either 1 or−1, hence the supremum of the set
{2+(−1)n}n≥k is 3 for each positive integer k. Hence the limit of the constant sequence {supn≥k 2+(−1)n}k
is 3. Therefore the radius of convergence is 1/3.
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Problem 6.4. Taylor 3.1.16.

Solution: Recall the power series expansion of the function e−w
2

about 0 is
∑∞

k=0(−1)kw2k/k! and the
radius of convergence of it is ∞, hence it converges absolutely and uniformly on the entire complex plane.
In particular, we may integrate the series term by term on the entire complex plane: for all z ∈ C, we have

E(z) =

∫ z

0

∞∑
k=0

(−1)k

k!
w2kdw =

∞∑
k=0

(−1)k

k!

∫ z

0

w2kdw =

∞∑
k=0

(−1)k

k!(2k + 1)
z2k+1.

We claim the series converges absolutely on the entire complex plane. Let z ∈ C be given, consider the series
of absolute values of the terms:

∑∞
k=0 |z|

2k+1
/(k!(2k + 1)). The ratio between to consecutive terms is

|z|2k+3

(k + 1)!(2k + 3)
· k!(2k + 1)

|z|2k+1
=
|z|2

k + 1
· 2k + 1

2k + 3
.

Since limk→∞(2k+1)/(2k+3) = 1 and limk→∞ |z|2 /(k+1) = 0, it follows that the limit of the product as k
approaches infinity is 0. Therefore we conclude by ratio test that the series of interest converges absolutely
for all z ∈ C. �

Problem 6.6. Establish the following:

1. For any integer n, limk→∞(kn)1/k = 1.

2. Suppose that {ak} and {bk} are sequences of non-negative real numbers with a = limk→∞ ak and
b = lim supk→∞ bk. Show that ab = lim supk→∞(akbk).

Proof.

1. Observe kn/k = e(n/k) ln k. Since the function that maps z ∈ C to enz is continuous on C, we have

lim
k→∞

en(ln k)/k = en limk→∞(ln k)/k.

To show the limit is 1, it suffices to show limk→∞(ln k)/k = 0. Observe for all x ∈ R, ln(x) < x, hence

0 ≤ ln k

k
=

2 ln
√
k

k
≤ 2
√
k

k
=

2√
k
.

We know limk→∞ 2/
√
k = 0, it follows by comparison that limk→∞(lnx)/x = 0.

2. Observe a and b cannot simultaneously be 0 and ∞ since the product 0 · ∞ does not make sense.

First consider the case that lim supk→∞ bk = b = ∞ and a 6= 0, we want to show lim supk→∞ akbk =
∞ as well. Let M ∈ R and N ∈ N be given, we want to show there exists K0 > N such that
supn≥K0

anbn > M . Since limk→∞ ak = a, there exists K1 ∈ N such that for all k > K1, |ak − a| < a/2
(notice we need a > 0 here). Since lim supk→∞ bk = ∞, there exists K0 > max{N,K1} such that
supn≥K0

bn > 2M/a. Then for any n ≥ K0, we have a/2 < an, hence abn/2 < anbn, hence after taking
the supremum we have

a

2
sup
n≥K0

bn ≤ sup
n≥K0

anbn.

Since supn≥K0
bn > 2M/a, we have

M =
a

2
· 2M

a
<
a

2
sup
n≥K0

bn ≤ sup
n≥K0

anbn.

This proves the sequence {supn≥k anbn}k is unbounded, hence lim supk→∞ akbk =∞ by definition.
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Now suppose b 6=∞. Since a = limk→∞ ak and b = lim supk→∞ bk, the product ak supn≥k bn converges
to ab. Therefore it suffices to show

lim
k→∞

[
ak(sup

n≥k
bn)− sup

n≥k
anbn

]
= 0.

Let ε > 0 be given. Since limk→∞ ak = a, there exists K1 ∈ N such that for all k > K1, |ak − a| <
ε/(2(b + 1)) (notice we need b 6= ∞ here). Since lim supk→∞ bk = b, there exists K2 such that for all
k ≥ K2,

∣∣supn≥k bn − b
∣∣ < 1. Let K0 := max{K1,K2}, then for all k > K0,

a− ε

2(b+ 1)
< ak < a+

ε

2(b+ 1)
.

Since bn ≥ 0 for all n, supn≥k bn ≥ 0, hence multiplying each side by supn≥k bn gives us inequality(
a− ε

2(b+ 1)

)(
sup
n≥k

bn

)
< ak

(
sup
n≥k

bn

)
<
(
a+

ε

2(b+ 1)

)(
sup
n≥k

bn

)
.

On the other hand, we may multiply each side by bk and get(
a− ε

2(b+ 1)

)
bk < akbk <

(
a+

ε

2(b+ 1)

)
bk.

Rename k to n and take the supremum over n ≥ k gives us(
a− ε

2(b+ 1)

)(
sup
n≥k

bn

)
< sup

n≥k
anbn <

(
a+

ε

2(b+ 1)

)(
sup
n≥k

bk

)
.

Therefore the difference
∣∣ak(supn≥k bn)− supn≥k anbn

∣∣ is upperbounded by the difference(
a+

ε

2(b+ 1)

)(
sup
n≥k

bk

)
−
(
a− ε

2(b+ 1)

)(
sup
n≥k

bn

)
,

which equals
ε

b+ 1

(
sup
n≥k

bk

)
.

Since supn≥k bk < b+ 1, it follows the difference is upperbounded by

ε

b+ 1
(b+ 1) = ε,

which is what we wanted.

Problem 6.6. Taylor 3.2.1.

Solution: Observe (1 − z)−2 = d(1 − z)−1/dz for all z ∈ C \ {1}, and recall (1 − z)−1 =
∑∞

n=0 z
n for

0 ≤ |z| < 1. Since the radius of convergence of the series
∑∞

n=0 z
n is 1, it follows by Corollary 3.1.8 that the

series
∑∞

n=0 z
n converges uniformly on {z ∈ C : 0 ≤ |z| < 1}, hence we may differentiate term by term and

obtain
d

dz

1

1− z
=

∞∑
n=1

nzn−1, 0 ≤ |z| < 1.

Therefore the power series
∑∞

n=1 nz
n−1 and the function (1 − z)−2 differs by a constant for 0 ≤ |z| < 1.

Since they both have value 0 when evaluated at z = 0, they coincides. We conclude that

1

(1− z)2
=

∞∑
n=1

nzn−1, 0 ≤ |z| < 1.

�

Problem 6.7. Taylor 3.2.2.
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Solution: Recall
√

1 + z = e(1/2) log(1+z) and in the principal branch, the function log(1 + z) is analytic on
C \ {(−∞,−1]}. Since the function that maps z to e(1/2)z is analytic on C, it follows the function

√
1 + z

is analytic on C \ {(−∞,−1]}. Therefore the radius of convergence of the power series expansion of
√

1 + z
about 0 is 1 (it is the radius of the largest disk centered at 0 contained in C\{(−∞, 0]}). Recall the function
log(1 + z) has power series expansion about 0

log(1 + z) = −
∞∑

n=1

(−1)n

n
zn, 0 ≤ |z| < 1,

and the function e(1/2)z has power series expansion about 0

e(1/2)z =

∞∑
m=0

(z/2)m

m!
, z ∈ C.

Therefore for 0 ≤ |z| < 1,

√
1 + z = e(1/2) log(1+z) =

∞∑
m=0

(−1)m

m!

( ∞∑
n=0

(−1)n

2n
zn
)m

=:

∞∑
k=0

ckz
k, 0 ≤ |z| < 1.

Where the coefficients ck have explicit form

ck =

∞∑
l=1

∑
n1+···+nl=k

(−1)l

l!

l∏
j=1

(−1)nj

2nj
.

�

Problem 6.8. Find the power series expansion of

f(z) =
1

(z + 1)(z + 2)

about z = 0, and find its radius of convergence.

Solution: By partial fraction we have

f(z) =
1

z + 1
− 1

z + 2
.

Since we know 1/(1− z) has power series expansion about 0 being
∑∞

n=0 z
n. Then 1/(z+ 1) = 1/(1− (−z))

has power series expansion about 0 being
∑∞

n=0(−1)nzn with radius of convergence being 1. Similarly
1/(z + 2) = (1/2)(1/(1− (−z/2))) has power series expansion about 0

1

2

∞∑
n=0

(
− 1

2

)n
zn, 0 ≤ |z| < 2.

Therefore f(z) has power series expansion about 0

f(z) =

( ∞∑
n=0

(−1)nzn

)
−

( ∞∑
n=0

(
− 1

2n+1

)
zn

)
=

∞∑
n=0

[
(−1)n +

1

2n+1

]
zn, 0 ≤ |z| < 1.

The radius of convergence of the series is indeed 1 because f(z) is analytic on C \ {−1,−2}, and the radius
of the largest disk centered at 0 on which f is analytic is 1. �


