Math 427 Homework \#6 Solutions

Thomas Sixuan Lou

November 27, 2018

Problem 6.1. Taylor 3.1.2.

Proof. First let $k \geq 0$ be fixed, we want to show for any $\epsilon>0$ there exists $N_{0} \in \mathbb{N}$ such that for all $N>N_{0}$ we have $|\sin (x / N)|<\epsilon$ for all $x \in[0, k]$. Observe by increasing N, we are stretching up the graph $\sin (x)$ horizontally, hence the idea is to stretch it enough so that for any $x \in[0, k]$ the value of the function $\sin (x / N)$ is less than ϵ.

Formally, let $\epsilon>0$ be given. If $\epsilon>1$ we are done since we know $|\sin (x / N)| \leq 1$ for all x. Suppose now that $\epsilon \in(0,1]$, pick natural number N_{0} such that $N_{0}>\max \{k / \arcsin (\epsilon), 2 k / \pi\}$, since $\epsilon \in(0,1]$, we may pick the value of the arcsin function from the interval $(0, \pi / 2]$. Therefore, for any $N>N_{0}$ and $x \in[0, k]$, we have

$$
N>N_{0}>\frac{k}{\arcsin (\epsilon)}>\frac{x}{\arcsin (\epsilon)}
$$

Rearranging the inequality we have $\arcsin (\epsilon)>x / N$. Since the sin function is monotonically increasing on the interval $(0, \pi / 2]$, applying it to both sides of the inequality we obtain $\epsilon>\sin (x / N)$. Since $N>N_{0}>2 k / \pi$ and $x \in[0, k]$, we know $x / N \in[0, \pi / 2]$, hence $\sin (x / N) \in[0,1]$, therefore $|\sin (x / N)|=\sin (x / N)<\epsilon$. This shows the sequence of functions $\{\sin (x / n)\}_{n}$ converges uniformly on the interval $[0, k]$.

To show the sequence of functions $\{\sin (x / n)\}_{n}$ does not converge uniformly on $[0, \infty)$, we just need to notice for any $n \in \mathbb{N}$, we may pick $x:=\pi n / 2 \in[0, \infty)$ such that $\sin (x / n)=\sin (\pi / 2)=1$, which cannot be made arbitrarily small.

Problem 6.2. Taylor 3.1.7.

Proof. Let $s>1$ be fixed, suppose $z=x+i y \in \mathbb{C}$ with $x>s$ be given, then for each positive integer k we have $\left|k^{-z}\right|=\left|k^{-x}\right| /\left|k^{i y}\right|=\left|k^{-x}\right|<\left|k^{-s}\right|=k^{-s}$. Furthermore by p-series test, the series $\sum_{k=1}^{\infty} k^{-s}$ converges. Therefore it follows from Weierstraß's M Test that the series $\sum_{k=1}^{\infty} k^{-z}$ converges uniformly on each set of the form $\{z \in \mathbb{C}: \operatorname{Re}(z)>s\}$, where $s>1$.

Problem 6.3. Taylor 3.1.10.

Solution: We want to compute

$$
\left(\limsup _{k \rightarrow \infty}\left|2+(-1)^{k}\right|\right)^{-1}
$$

Observe for each positive integer k and $n \geq k$, the value $(-1)^{n}$ is either 1 or -1 , hence the supremum of the set $\left\{2+(-1)^{n}\right\}_{n \geq k}$ is 3 for each positive integer k. Hence the limit of the constant sequence $\left\{\sup _{n \geq k} 2+(-1)^{n}\right\}_{k}$ is 3 . Therefore the radius of convergence is $1 / 3$.

Problem 6.4. Taylor 3.1.16.

Solution: Recall the power series expansion of the function $e^{-w^{2}}$ about 0 is $\sum_{k=0}^{\infty}(-1)^{k} w^{2 k} / k$! and the radius of convergence of it is ∞, hence it converges absolutely and uniformly on the entire complex plane. In particular, we may integrate the series term by term on the entire complex plane: for all $z \in \mathbb{C}$, we have

$$
E(z)=\int_{0}^{z} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} w^{2 k} d w=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \int_{0}^{z} w^{2 k} d w=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(2 k+1)} z^{2 k+1}
$$

We claim the series converges absolutely on the entire complex plane. Let $z \in \mathbb{C}$ be given, consider the series of absolute values of the terms: $\sum_{k=0}^{\infty}|z|^{2 k+1} /(k!(2 k+1))$. The ratio between to consecutive terms is

$$
\frac{|z|^{2 k+3}}{(k+1)!(2 k+3)} \cdot \frac{k!(2 k+1)}{|z|^{2 k+1}}=\frac{|z|^{2}}{k+1} \cdot \frac{2 k+1}{2 k+3}
$$

Since $\lim _{k \rightarrow \infty}(2 k+1) /(2 k+3)=1$ and $\lim _{k \rightarrow \infty}|z|^{2} /(k+1)=0$, it follows that the limit of the product as k approaches infinity is 0 . Therefore we conclude by ratio test that the series of interest converges absolutely for all $z \in \mathbb{C}$.

Problem 6.6. Establish the following:

1. For any integer $n, \lim _{k \rightarrow \infty}\left(k^{n}\right)^{1 / k}=1$.
2. Suppose that $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are sequences of non-negative real numbers with $a=\lim _{k \rightarrow \infty} a_{k}$ and $b=\lim \sup _{k \rightarrow \infty} b_{k}$. Show that $a b=\lim \sup _{k \rightarrow \infty}\left(a_{k} b_{k}\right)$.

Proof.

1. Observe $k^{n / k}=e^{(n / k) \ln k}$. Since the function that maps $z \in \mathbb{C}$ to $e^{n z}$ is continuous on \mathbb{C}, we have

$$
\lim _{k \rightarrow \infty} e^{n(\ln k) / k}=e^{n \lim _{k \rightarrow \infty}(\ln k) / k}
$$

To show the limit is 1 , it suffices to show $\lim _{k \rightarrow \infty}(\ln k) / k=0$. Observe for all $x \in \mathbb{R}, \ln (x)<x$, hence

$$
0 \leq \frac{\ln k}{k}=\frac{2 \ln \sqrt{k}}{k} \leq \frac{2 \sqrt{k}}{k}=\frac{2}{\sqrt{k}}
$$

We know $\lim _{k \rightarrow \infty} 2 / \sqrt{k}=0$, it follows by comparison that $\lim _{k \rightarrow \infty}(\ln x) / x=0$.
2. Observe a and b cannot simultaneously be 0 and ∞ since the product $0 \cdot \infty$ does not make sense.

First consider the case that $\lim \sup _{k \rightarrow \infty} b_{k}=b=\infty$ and $a \neq 0$, we want to show $\lim \sup _{k \rightarrow \infty} a_{k} b_{k}=$ ∞ as well. Let $M \in \mathbb{R}$ and $N \in \mathbb{N}$ be given, we want to show there exists $K_{0}>N$ such that $\sup _{n \geq K_{0}} a_{n} b_{n}>M$. Since $\lim _{k \rightarrow \infty} a_{k}=a$, there exists $K_{1} \in \mathbb{N}$ such that for all $k>K_{1},\left|a_{k}-a\right|<a / 2$ (notice we need $a>0$ here). Since $\limsup _{k \rightarrow \infty} b_{k}=\infty$, there exists $K_{0}>\max \left\{N, K_{1}\right\}$ such that $\sup _{n \geq K_{0}} b_{n}>2 M / a$. Then for any $n \geq K_{0}$, we have $a / 2<a_{n}$, hence $a b_{n} / 2<a_{n} b_{n}$, hence after taking the supremum we have

$$
\frac{a}{2} \sup _{n \geq K_{0}} b_{n} \leq \sup _{n \geq K_{0}} a_{n} b_{n}
$$

Since $\sup _{n \geq K_{0}} b_{n}>2 M / a$, we have

$$
M=\frac{a}{2} \cdot \frac{2 M}{a}<\frac{a}{2} \sup _{n \geq K_{0}} b_{n} \leq \sup _{n \geq K_{0}} a_{n} b_{n}
$$

This proves the sequence $\left\{\sup _{n \geq k} a_{n} b_{n}\right\}_{k}$ is unbounded, hence $\lim \sup _{k \rightarrow \infty} a_{k} b_{k}=\infty$ by definition.

Now suppose $b \neq \infty$. Since $a=\lim _{k \rightarrow \infty} a_{k}$ and $b=\limsup _{k \rightarrow \infty} b_{k}$, the product $a_{k} \sup _{n \geq k} b_{n}$ converges to $a b$. Therefore it suffices to show

$$
\lim _{k \rightarrow \infty}\left[a_{k}\left(\sup _{n \geq k} b_{n}\right)-\sup _{n \geq k} a_{n} b_{n}\right]=0
$$

Let $\epsilon>0$ be given. Since $\lim _{k \rightarrow \infty} a_{k}=a$, there exists $K_{1} \in \mathbb{N}$ such that for all $k>K_{1},\left|a_{k}-a\right|<$ $\epsilon /(2(b+1))$ (notice we need $b \neq \infty$ here). Since $\limsup _{k \rightarrow \infty} b_{k}=b$, there exists K_{2} such that for all $k \geq K_{2},\left|\sup _{n \geq k} b_{n}-b\right|<1$. Let $K_{0}:=\max \left\{K_{1}, K_{2}\right\}$, then for all $k>K_{0}$,

$$
a-\frac{\epsilon}{2(b+1)}<a_{k}<a+\frac{\epsilon}{2(b+1)}
$$

Since $b_{n} \geq 0$ for all $n, \sup _{n \geq k} b_{n} \geq 0$, hence multiplying each side by $\sup _{n \geq k} b_{n}$ gives us inequality

$$
\left(a-\frac{\epsilon}{2(b+1)}\right)\left(\sup _{n \geq k} b_{n}\right)<a_{k}\left(\sup _{n \geq k} b_{n}\right)<\left(a+\frac{\epsilon}{2(b+1)}\right)\left(\sup _{n \geq k} b_{n}\right) .
$$

On the other hand, we may multiply each side by b_{k} and get

$$
\left(a-\frac{\epsilon}{2(b+1)}\right) b_{k}<a_{k} b_{k}<\left(a+\frac{\epsilon}{2(b+1)}\right) b_{k}
$$

Rename k to n and take the supremum over $n \geq k$ gives us

$$
\left(a-\frac{\epsilon}{2(b+1)}\right)\left(\sup _{n \geq k} b_{n}\right)<\sup _{n \geq k} a_{n} b_{n}<\left(a+\frac{\epsilon}{2(b+1)}\right)\left(\sup _{n \geq k} b_{k}\right)
$$

Therefore the difference $\left|a_{k}\left(\sup _{n \geq k} b_{n}\right)-\sup _{n \geq k} a_{n} b_{n}\right|$ is upperbounded by the difference

$$
\left(a+\frac{\epsilon}{2(b+1)}\right)\left(\sup _{n \geq k} b_{k}\right)-\left(a-\frac{\epsilon}{2(b+1)}\right)\left(\sup _{n \geq k} b_{n}\right)
$$

which equals

$$
\frac{\epsilon}{b+1}\left(\sup _{n \geq k} b_{k}\right) .
$$

Since $\sup _{n \geq k} b_{k}<b+1$, it follows the difference is upperbounded by

$$
\frac{\epsilon}{b+1}(b+1)=\epsilon
$$

which is what we wanted.

Problem 6.6. Taylor 3.2.1.

Solution: Observe $(1-z)^{-2}=d(1-z)^{-1} / d z$ for all $z \in \mathbb{C} \backslash\{1\}$, and recall $(1-z)^{-1}=\sum_{n=0}^{\infty} z^{n}$ for $0 \leq|z|<1$. Since the radius of convergence of the series $\sum_{n=0}^{\infty} z^{n}$ is 1 , it follows by Corollary 3.1.8 that the series $\sum_{n=0}^{\infty} z^{n}$ converges uniformly on $\{z \in \mathbb{C}: 0 \leq|z|<1\}$, hence we may differentiate term by term and obtain

$$
\frac{d}{d z} \frac{1}{1-z}=\sum_{n=1}^{\infty} n z^{n-1}, \quad 0 \leq|z|<1
$$

Therefore the power series $\sum_{n=1}^{\infty} n z^{n-1}$ and the function $(1-z)^{-2}$ differs by a constant for $0 \leq|z|<1$. Since they both have value 0 when evaluated at $z=0$, they coincides. We conclude that

$$
\frac{1}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n-1}, \quad 0 \leq|z|<1
$$

Problem 6.7. Taylor 3.2.2.

Solution: Recall $\sqrt{1+z}=e^{(1 / 2) \log (1+z)}$ and in the principal branch, the function $\log (1+z)$ is analytic on $\mathbb{C} \backslash\{(-\infty,-1]\}$. Since the function that maps z to $e^{(1 / 2) z}$ is analytic on \mathbb{C}, it follows the function $\sqrt{1+z}$ is analytic on $\mathbb{C} \backslash\{(-\infty,-1]\}$. Therefore the radius of convergence of the power series expansion of $\sqrt{1+z}$ about 0 is 1 (it is the radius of the largest disk centered at 0 contained in $\mathbb{C} \backslash\{(-\infty, 0]\})$. Recall the function $\log (1+z)$ has power series expansion about 0

$$
\log (1+z)=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n}, \quad 0 \leq|z|<1
$$

and the function $e^{(1 / 2) z}$ has power series expansion about 0

$$
e^{(1 / 2) z}=\sum_{m=0}^{\infty} \frac{(z / 2)^{m}}{m!}, \quad z \in \mathbb{C}
$$

Therefore for $0 \leq|z|<1$,

$$
\sqrt{1+z}=e^{(1 / 2) \log (1+z)}=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n} z^{n}\right)^{m}=: \sum_{k=0}^{\infty} c_{k} z^{k}, \quad 0 \leq|z|<1
$$

Where the coefficients c_{k} have explicit form

$$
c_{k}=\sum_{l=1}^{\infty} \sum_{n_{1}+\cdots+n_{l}=k} \frac{(-1)^{l}}{l!} \prod_{j=1}^{l} \frac{(-1)^{n_{j}}}{2 n_{j}}
$$

Problem 6.8. Find the power series expansion of

$$
f(z)=\frac{1}{(z+1)(z+2)}
$$

about $z=0$, and find its radius of convergence.

Solution: By partial fraction we have

$$
f(z)=\frac{1}{z+1}-\frac{1}{z+2}
$$

Since we know $1 /(1-z)$ has power series expansion about 0 being $\sum_{n=0}^{\infty} z^{n}$. Then $1 /(z+1)=1 /(1-(-z))$ has power series expansion about 0 being $\sum_{n=0}^{\infty}(-1)^{n} z^{n}$ with radius of convergence being 1 . Similarly $1 /(z+2)=(1 / 2)(1 /(1-(-z / 2)))$ has power series expansion about 0

$$
\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} z^{n}, \quad 0 \leq|z|<2
$$

Therefore $f(z)$ has power series expansion about 0

$$
f(z)=\left(\sum_{n=0}^{\infty}(-1)^{n} z^{n}\right)-\left(\sum_{n=0}^{\infty}\left(-\frac{1}{2^{n+1}}\right) z^{n}\right)=\sum_{n=0}^{\infty}\left[(-1)^{n}+\frac{1}{2^{n+1}}\right] z^{n}, \quad 0 \leq|z|<1
$$

The radius of convergence of the series is indeed 1 because $f(z)$ is analytic on $\mathbb{C} \backslash\{-1,-2\}$, and the radius of the largest disk centered at 0 on which f is analytic is 1 .

