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Abstract. This is the first of three papers in which we give a moduli interpretation of the

second flip in the log minimal model program for Mg, replacing the locus of curves with a

genus 2 Weierstrass tail by a locus of curves with a ramphoid cusp. In this paper, for α ∈
(2/3−ε, 2/3+ε), we introduce new α-stability conditions for curves and prove that they are de-

formation open. This yields algebraic stacksMg(α) related by open immersionsMg(2/3+ε) ↪→
Mg(2/3) ←↩Mg(2/3−ε). We prove that around a curve C corresponding to a closed point in

Mg(2/3), these open immersions are locally modeled by variation of GIT for the action of

Aut(C) on the first order deformation space of C.

1. Introduction

In an effort to understand the canonical model of Mg, Hassett and Keel introduced the log

minimal model program for Mg, henceforth the Hassett-Keel program. For any α ∈ Q ∩ [0, 1]

such that KMg
+ αδ is big, Hassett defined

(1.1) Mg(α) := Proj
⊕
m≥0

H0(Mg, bm(KMg
+ αδ)c),

and asked whether the spaces Mg(α) admit a modular interpretation [Has05]. In [HH09, HH13],

Hassett and Hyeon carried out the first two steps of this program by showing that:

Mg(α) =


Mg if α ∈ (9/11, 1]

M
ps
g if α ∈ (7/10, 9/11]

M
c
g if α = 7/10

M
h
g if α ∈ (7/10−ε, 7/10)

where M
ps
g , M

c
g , and M

h
g are the moduli spaces of pseudostable (see [Sch91]), c-semistable, and

h-semistable curves (see [HH13]), respectively. Additional steps of the Hassett-Keel program for

Mg are known when g ≤ 6 [Has05, HL10, HL14, Fed12, CMJL12, CMJL14, Mül14, FS13]. In

these works, new projective moduli spaces of curves are constructed using Geometric Invariant

Theory (GIT). Indeed, one of the most appealing features of the Hassett-Keel program is the way

it ties together different compactifications of Mg obtained by varying the parameters implicit in

Gieseker and Mumford’s classical GIT construction of Mg [Mum77, Gie82]. We refer the reader

to [Mor09] for a detailed discussion of these modified GIT constructions.

This is the first paper in the trilogy in which we develop new techniques for constructing

moduli spaces without GIT and apply them to construct the third step of the Hassett-Keel

program for Mg, a flip replacing Weierstrass genus 2 tails by ramphoid cusps. In fact, we give a

uniform construction of the first three steps of the Hassett-Keel program for Mg, as well as an
1
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analogous program for Mg,n. To motivate our approach, let us recall the three-step procedure

used to construct Mg and establish its projectivity intrinsically:

(1) Prove that the functor of stable curves is a proper Deligne-Mumford stack Mg [DM69].

(2) Use the Keel-Mori theorem to show that Mg has a coarse moduli space Mg → Mg

[KM97].

(3) Prove that some line bundle on Mg descends to an ample line bundle on Mg [Kol90,

Cor93].

This is now the standard procedure for constructing projective moduli spaces in algebraic

geometry. It is indispensable in cases where a global quotient presentation for the relevant

moduli problem is not available, or where the GIT stability analysis is intractable, and there are

good reasons to expect both these issues to arise in further stages of the Hassett-Keel program

for Mg. Unfortunately, this procedure cannot be used to construct the log canonical models

Mg(α) because potential moduli stacks Mg(α) may include curves with infinite automorphism

groups. In other words, the stacksMg(α) may be non-separated and therefore may not possess

a Keel-Mori coarse moduli space. The correct fix is to replace the notion of a coarse moduli

space by a good moduli space, as defined and developed by Alper [Alp13, Alp10, Alp14].

In the second paper of this trilogy, we prove a general existence theorem for good moduli

spaces of non-separated algebraic stacks ([AFS16a, Theorem 1.2]) that can be viewed as a

generalization of the Keel-Mori theorem [KM97]. This allows us to carry out a modified version

of the standard three-step procedure in order to construct moduli interpretations for the log

canonical models1

(1.2) Mg,n(α) := Proj
⊕
m≥0

H0(Mg,n, bm(KMg,n
+ αδ + (1− α)ψ)c),

in the final part of this trilogy [AFS16b]. Specifically, for all α > 2/3−ε, where 0 < ε� 1, we

(1) Construct an algebraic stack Mg,n(α) of α-stable curves (Theorem A).

(2) Construct a good moduli space Mg,n(α)→Mg,n(α) (Theorem B).

(3) Show that KMg,n(α) + αδ + (1 − α)ψ on Mg,n(α) descends to an ample line bundle on

Mg,n(α), and conclude that Mg,n(α) 'Mg,n(α) (Theorem C).

The definition of α-stability changes when α passes through one of the three critical values:

α1 = 9/11, α2 = 7/10, and α3 = 2/3. We often denote a critical value by αc without specifying

the index c. With this terminology, we prove the following result (see Theorem 2.7) in this

paper:

Theorem A. For α ∈ (2/3−ε, 1], the stackMg,n(α) of α-stable curves is algebraic and of finite

type over SpecC. Furthermore, for each critical value αc ∈ {9/11, 7/10, 2/3}, we have open

immersions:

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc − ε).

In our second paper, we prove these stacks admit good moduli spaces:

1Note that the natural divisor for scaling in the pointed case is KMg,n
+αδ+ (1−α)ψ = 13λ− (2−α)(δ−ψ)

rather than KMg,n
+ αδ; see [Smy11, p.1845] for a discussion of this point.
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Theorem B ([AFS16a, Theorem 1.1]). For every α ∈ (2/3−ε, 1], Mg,n(α) admits a good

moduli space Mg,n(α), which is a proper algebraic space over SpecC. Furthermore, for each

critical value αc there exists a diagram

Mg,n(αc+ε)

��

� � //Mg,n(αc)

��

Mg,n(αc−ε)? _oo

��
Mg,n(αc+ε) // Mg,n(αc) Mg,n(αc−ε)oo

where Mg,n(αc) → Mg,n(αc), Mg,n(αc + ε) → Mg,n(αc + ε) and Mg,n(αc − ε) → Mg,n(αc − ε)
are good moduli spaces, and where Mg,n(αc + ε) → Mg,n(αc) and Mg,n(αc − ε) → Mg,n(αc) are

proper morphisms of algebraic spaces.

In our third paper, we identify these good moduli spaces with the appropriate log canonical

models:

Theorem C ([AFS16b, Theorem 1.1]). For α > 2/3−ε, the following statements hold:

(1) The line bundle KMg,n(α) +αδ+ (1−α)ψ descends to an ample line bundle on Mg,n(α).

(2) There is an isomorphism Mg,n(α) 'Mg,n(α).

Putting this all together, we have the following result.

Main Theorem (of the trilogy). There exists a diagram

Mg,n
� �

i+1

//

��

Mg,n( 9
11 )

φ1

��

Mg,n( 9
11−ε)

� �

i+2

//

φ−
1

��

? _

i−1

oo Mg,n( 7
10 )

φ2

��

Mg,n( 7
10−ε)? _

i−2

oo � �

i+3

//

φ−
2

��

Mg,n( 2
3 )

φ3

��

Mg,n(23−ε)? _

i−3

oo

φ−
3

��
Mg,n

j+1

$$

Mg,n( 9
11−ε)

j+2

&&

j−1

xx

Mg,n( 7
10−ε)

j+3

&&

j−2

xx

Mg,n(23−ε)
j−3

xx
Mg,n( 9

11 ) Mg,n( 7
10 ) Mg,n( 2

3 )

where:

(1) Mg,n(α) is the moduli stack of α-stable curves, and for c = 1, 2, 3:

(2) i+c and i−c are open immersions of algebraic stacks.

(3) The morphisms φc and φ−c are good moduli spaces.

(4) The morphisms j+
c and j−c are projective morphisms induced by i+c and i−c , respectively.

When n = 0, the above diagram constitutes the steps of the Hassett-Keel program for Mg. In

particular, j+
1 is the first contraction, j−1 is an isomorphism, (j+

2 , j
−
2 ) is the first flip, and (j+

3 , j
−
3 )

is the second flip.

Remark 1.1. The theorem is degenerate in several special cases: For (g, n) = (1, 1), (1, 2),

(2, 0), the divisor KMg,n
+ αδ + (1 − α)ψ hits the edge of the effective cone at 9/11, 7/10, and

7/10, respectively, and hence the diagram should be taken to terminate at these critical values.

Furthermore, when g = 1 and n ≥ 3, or (g, n) = (3, 0), (3, 1), α-stability does not change at the

critical value α3 = 2/3, so the morphisms (i+3 , i
−
3 ) and (j+

3 , j
−
3 ) are isomorphisms. Finally, for

(g, n) = (2, 1), j+
3 is a divisorial contraction and j−3 is an isomorphism.
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Remark. For α > 9/11, we simply obtain the Deligne-Mumford spaces. When n = 0 and

α ∈ (2/3, 9/11), the stacksMg(α) have been constructed using GIT. In these cases, our definition

of α-stability agrees with the GIT semistability notions studied in the work of Schubert, Hassett,

Hyeon, and Morrison [Sch91, HH09, HH13, HM10]. Namely,Mg(α) is the stack of weakly pseu-

dostable, pseudostable, c-semistable, and h-semistable curves for α = 9/11, α ∈ (7/10, 9/11),

α = 7/10, and α ∈ (2/3, 7/10), respectively.

We should remark that the major work of the present paper is not simply a proof of Theorem

A, but also a precise local description of the maps between the stacksMg,n(α). The key idea is

that at each critical value αc ∈ {9/11, 7/10, 2/3}, the inclusions

Mg,n(αc+ε) ↪→Mg,n(αc)←↩Mg,n(αc−ε)

can be locally modeled by an intrinsic variation of GIT problem. This is made precise in

Definition 3.14 and Theorem 3.17, which is the main result of Section 3. This theorem is also

the key ingredient in our proof of Theorem B in [AFS16a].

1.1. Geometry of the second flip. Let us conclude by briefly describing the geometry of the

second flip. At α3 = 2/3, the locus of curves with a genus 2 Weierstrass tail (i.e., a genus 2

subcurve nodally attached to the rest of the curve at a Weierstrass point), or more generally

a Weierstrass chain (see Definition 2.3), is flipped to the locus of curves with a ramphoid cusp

(y2 = x5). The fibers of j+
3 correspond to varying moduli of Weierstrass chains, while the fibers

of j−3 correspond to varying moduli of ramphoid cuspidal crimpings. See Figure 1.

g=2

Weierstrass
point

j+
3

=
y2=x5

j−3

Figure 1. Curves with a nodally attached genus 2 Weierstrass tail are flipped

to curves with a ramphoid cuspidal (y2 = x5) singularity.

Moreover, if (K, p) is a fixed curve of genus g−2, all curves obtained by attaching a Weierstrass

genus 2 tail at p or imposing a ramphoid cusp at p are identified in Mg,n(2/3). This can be seen

on the level of stacks since, in Mg,n(2/3), all such curves admit an isotrivial specialization to

the curve C0, obtained by attaching a rational ramphoid cuspidal tail to K at p. See Figure 2.

1.2. Outline of the paper. Let us now give a more detailed outline of the contents of this

paper. Section 2 is devoted to the notion of α-stability. Namely, in §2.1, we define α-stable

curves, and in §2.2 we show that α-stability is a deformation open condition and conclude

that the moduli stacks of α-stable curves are algebraic (Theorem 2.7). After collecting some

elementary facts about families of α-stable curves in §2.3, we give in §2.4 a characterization of

the closed points of the stackMg,n(αc) at each critical value αc. We prove that the closed points

of Mg,n(αc) are precisely the αc-closed curves (Definition 2.21 and Theorem 2.22). In §2.5, we

define the combinatorial type of an αc-closed curve (only for αc = 2/3), mainly for the purpose

of establishing the notation that will be used to carry out the VGIT calculations of Section 3.
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g=2

Weierstrass
point

y2=x5

C0

y2=x5g=0

Figure 2. C0 is a nodal union of a genus g−2 curve K and a rational ramphoid

cuspidal tail. All curves obtained by either attaching a Weierstrass genus 2 tail

to K at p, or imposing a ramphoid cusp on K at p, isotrivially specialize to C0.

Observe that Aut(C0) is not finite.

In Section 3, we develop the machinery of local quotient presentations and local variation

of GIT. In §3.1, we recall some basic facts about variation of GIT quotients for the action of

a reductive group on an affine scheme. In §3.2, we define the VGIT chambers associated to

a local quotient presentation. In §3.3, we write out explicit coordinates for the deformation

space Def(C) of an αc-stable curve C and describe the natural action of Aut(C) on Def(C) in

these coordinates. This sets us up for a major invariant theory computation in §3.4, where we

verify that the VGIT chambers associated to the local quotient presentation [Def(C)/Aut(C]→
Mg,n(αc) do indeed cut out the inclusions Mg,n(αc+ε) ↪→Mg,n(α)←↩Mg,n(αc−ε) (Theorem

3.17).

1.3. Notation. We work over a fixed algebraically closed field C of characteristic zero. An

n-pointed curve (C, {pi}ni=1) is a connected, reduced, proper 1-dimensional C-scheme C with n

distinct smooth marked points pi ∈ C. A curve C has an Ak-singularity at p ∈ C if ÔC,p '
C[[x, y]]/(y2− xk+1). An A1- (resp., A2-, A3-, A4-) singularity is also called a node (resp., cusp,

tacnode, ramphoid cusp). We use the notation ∆ = SpecR and ∆∗ = SpecK, where R is a

discrete valuation ring with fraction field K; we set 0, η and η̄ to be the closed point, the generic

point and the geometric generic point respectively of ∆. We say that a flat family C → ∆ is an

isotrivial specialization if C ×∆ ∆∗ → ∆∗ is isotrivial.

Acknowledgements. We thank Brendan Hassett and Ian Morrison for their enthusiastic and

long-standing support of this project. In particular, we are grateful to Ian Morrison for detailed

comments and suggestions on the earlier version of this paper. We also thank Joe Harris, David

Hyeon, Johan de Jong, Seán Keel, and Ravi Vakil for many useful conversations and suggestions.

Finally, we thank the anonymous referee whose feedback greatly improved the exposition.

This project originated from the stimulating environment of the MSRI’s Algebraic Geometry

program in 2009. The first author was partially supported by an NSF Postdoctoral Research

Fellowship and the ARC grant DE140101519. The second author was partially supported by the

NSF grant DMS-1259226 and the ANU MSRVP fund. The third author was partially supported

by the NSF grant DMS-0901095 and the ARC grant DE140100259.

2. α-stability

In this section, we define α-stability (Definition 2.5) and show that it is an open condition.

We conclude that Mg,n(α), the stack of n-pointed α-stable curves of genus g, is an algebraic
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stack of finite type over C (see Theorem 2.7). We also give a complete description of the closed

points of Mg,n(αc) for αc ∈ {2/3, 7/10, 9/11} (Theorem 2.22).

2.1. Definition of α-stability. The basic idea is to modify Deligne-Mumford stability by

designating certain curve singularities as ‘stable,’ and certain subcurves as ‘unstable.’ We begin

by defining the unstable subcurves associated to the first three steps of the Hassett-Keel program

for Mg,n.

Definition 2.1 (Tails and Bridges).

(1) An elliptic tail is a 1-pointed curve (E, q) of arithmetic genus 1 which admits a finite

degree 2 map φ : E → P1 ramified at q.

(2) An elliptic bridge is a 2-pointed curve (E, q1, q2) of arithmetic genus 1 which admits a

finite degree 2 map φ : E → P1 such that φ−1({∞}) = {q1 + q2}.
(3) A Weierstrass genus 2 tail (or simply Weierstrass tail) is a 1-pointed curve (E, q) of

arithmetic genus 2 which admits a finite degree 2 map φ : E → P1 ramified at q.

We use the term αc-tail to mean an elliptic tail if αc = 9/11, an elliptic bridge if αc = 7/10, and

a Weierstrass tail if αc = 2/3.

q
g=1

q1

q2 g=1
q

g=2

Weierstrass point

Figure 3. An elliptic tail, elliptic bridge, and Weierstrass tail.

Unfortunately, we cannot describe our α-stability conditions purely in terms of tails and

bridges. As already seen in [HH13], an additional layer of combinatorial description is needed,

and this is encapsulated in our definition of chains. In addition, when describing tails and chains

as subcurves, it is important to specify the singularities along which the tail or chain is attached.

This motivates the following several definitions.

Definition 2.2. A gluing morphism γ : (E, {qi}mi=1)→ (C, {pi}ni=1) between two pointed curves

is a finite morphism E → C, which is an open immersion when restricted to E − {q1, . . . , qm}.
We do not require the points {γ(qi)}mi=1 to be distinct, or to be marked points of C.

Definition 2.3 (Chains). An elliptic chain of length r is a 2-pointed curve (E, p1, p2) which

admits a surjective gluing morphism

γ :

r∐
i=1

(Ei, q2i−1, q2i)→ (E, p1, p2)

such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r.

(2) γ(q2i) = γ(q2i+1) is an A3-singularity of E for i = 1, . . . , r − 1.

(3) γ(q1) = p1 and γ(q2r) = p2.

A Weierstrass chain of length r is a 1-pointed curve (E, p) which admits a surjective gluing

morphism

γ :
r−1∐
i=1

(Ei, q2i−1, q2i)
∐

(Er, q2r−1)→ (E, p)
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such that:

(1) (Ei, q2i−1, q2i) is an elliptic bridge for i = 1, . . . , r − 1, and (Er, q2r−1) is a Weierstrass

tail.

(2) γ(q2i) = γ(q2i+1) is an A3-singularity of E for i = 1, . . . , r − 1.

(3) γ(q1) = p.

An elliptic (resp., Weierstrass) chain of length 1 is an elliptic bridge (resp., Weierstrass tail).

(A)

p1 p2

1111

(B)

p

2111
Weierstrass point

Figure 4. Curve (A) (resp., (B)) is an elliptic (resp., Weierstrass) chain of length 4.

Definition 2.4 (Tails and Chains with Attaching Data). Let (C, {pi}ni=1) be an n-pointed curve.

We say that (C, {pi}ni=1) has

(1) Ak-attached elliptic tail if there is a gluing morphism γ : (E, q)→ (C, {pi}ni=1) such that

(a) (E, q) is an elliptic tail.

(b) γ(q) is an Ak-singularity of C, or if k = 1 we allow γ(q) to be a marked point.

(2) Ak1/Ak2-attached elliptic chain if there is a gluing morphism γ : (E, q1, q2)→ (C, {pi}ni=1)

such that

(a) (E, q1, q2) is an elliptic chain.

(b) γ(qi) is an Aki-singularity of C, or if ki = 1 we allow γ(qi) to be a marked point

(i = 1, 2).

(3) Ak-attached Weierstrass chain if there is a gluing morphism γ : (E, q) → (C, {pi}ni=1)

such that

(a) (E, q) is a Weierstrass chain.

(b) γ(q) is an Ak-singularity of C, or if k = 1 we allow γ(q) to be a marked point.

This definition entails an essential, systematic abuse of notation: when we say that a curve has

an A1-attached tail or chain, we always allow the A1-attachment points to be marked points.

We can now define α-stability.

Definition 2.5 (α-stability). For α ∈ (2/3−ε, 1], we say that an n-pointed curve (C, {pi}ni=1)

is α-stable if ωC(Σn
i=1pi) is ample and:

For α ∈ (9/11, 1]: C has only A1-singularities.

For α = 9/11: C has only A1, A2-singularities.

For α ∈ (7/10, 9/11): C is 9
11 -stable and does not contain:

• A1-attached elliptic tails.

For α = 7/10: C has only A1, A2, A3-singularities, and does not contain:

• A1, A3-attached elliptic tails.

For α ∈ (2/3, 7/10): C is 7
10 -stable and does not contain:

• A1/A1-attached elliptic chains.

For α = 2/3: C has only A1, A2, A3, A4-singularities, and does not contain:
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• A1, A3, A4-attached elliptic tails,

• A1/A1, A1/A4, A4/A4-attached elliptic chains.

For α ∈ (2/3−ε, 2/3): C is 2
3 -stable and does not contain:

• A1-attached Weierstrass chains.

A family of α-stable curves is a flat and proper family whose geometric fibers are α-stable.

We let Mg,n(α) denote the stack of n-pointed α-stable curves of arithmetic genus g.

(A)

A3 1

g − 2

Weierstrass
point

(B)

2

g − 2

(C)

A3

g − 3

1 1 p

(D)

1

A4

g − 3

Figure 5. Curve (A) has an A3-attached elliptic tail; it is never α-stable. Curve

(B) has an A1-attached Weierstrass tail; it is α-stable for α ≥ 2/3. Curve (C) has

an A1/A1-attached elliptic chain of length 2; it is α-stable for α ≥ 7/10. Curve

(D) has an A1/A4-attached elliptic bridge; it is never α-stable.

Remark. Our definition of an elliptic chain is similar, but not identical, to the definition of an

open tacnodal elliptic chain appearing in [HH13, Definition 2.4]. Whereas open tacnodal elliptic

chains are built out of arbitrary curves of arithmetic genus one, our elliptic chains are built out

of elliptic bridges. Nevertheless, it is easy to see that our definition of (7/10−ε)-stability agrees

with the definition of h-semistability in [HH13, Definition 2.7].

It will be useful to have a uniform way of referring to the singularities allowed and the

subcurves excluded at each stage of the Hassett-Keel program. Thus, for any α ∈ (2/3−ε, 1],

we use the term α-stable singularity to refer to any allowed singularity at the given value of

α. For example, a 2
3 -stable singularity is a node, cusp, tacnode, or ramphoid cusp. Similarly,

we use the term α-unstable subcurve to refer to any excluded subcurve at the given value of

α. For example, a 2
3 -unstable subcurve is an A1, A3 or A4-attached elliptic tail, or an A1/A1,

A1/A4 or A4/A4-attached elliptic chain. With this terminology, we may say that a curve is

α-stable if it has only α-stable singularities and has no α-unstable subcurves. Furthermore, if

αc ∈ {9/11, 7/10, 2/3} is a critical value, we use the term αc-critical singularity to refer to the

newly-allowed singularity at α = αc and αc-critical subcurve to refer to the newly disallowed

subcurve at α = αc − ε. Thus, a 2
3 -critical singularity is a ramphoid cusp, and a 2

3 -critical

subcurve is an A1-attached Weierstrass chain.
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Before plunging into the deformation theory and combinatorics of α-stable curves necessary

to prove Theorem 2.7 and carry out the VGIT analysis in Section 3, we take a moment to

contemplate on the features of α-stability that underlie our arguments and to give some intuition

behind the items of Definition 2.5. The following are the properties of α-stability that are desired

and that we prove to be true for all α ∈ (2/3−ε, 1]:

(1) α-stability is deformation open.

(2) The stack Mg,n(α) of all α-stable curves has a good moduli space, and

(3) The line bundle KMg,n(α) +αδ+ (1−α)ψ onMg,n(α) descends to an ample line bundle

on the good moduli space.

We will verify (1) in Proposition 2.15 thus obtaining Theorem 2.7. For instance, it is the

removal of curves containing 2
3 -unstable subcurves at α = 2/3 that will allow us to conclude

that the locus of A1-attached Weierstrass tails is closed in Mg,n(2/3).

The existence of a good moduli space in (2) requires that the automorphism of every closed α-

stable curve is reductive. We verify this necessary condition in Proposition 2.6, and turn around

to use it in the proofs of Theorem 3.17 and the existence of good moduli spaces in [AFS16a].

Statement (3) implies that the action of the stabilizer of any point on the fiber of the line

bundle KMg,n(α) +αδ+(1−α)ψ is trivial. As explained in [AFS14], this condition places strong

restrictions on what curves with Gm-action can be α-stable: For example, the α-invariant of a

nodally attached A3/4-atom is not 2/3, which provides another heuristic for why we disallow

A1/A4-attached elliptic chains at α = 2/3.

Proposition 2.6. The connected component of the identity Aut(C, {pi}ni=1)◦ is a torus for every

α-stable curve (C, {pi}ni=1). Consequently, Aut(C, {pi}ni=1) is reductive.

Proof. For an α-stable curve, the only irreducible components with a positive dimensional au-

tomorphism group are rational curves with two special points. The connected component of the

automorphism group of such a component is either {1} or Gm. The claim follows. �

Remark. We should note that Proposition 2.6 uses features of α-stability that hold only for

α > 2/3 − ε. We expect that for lower values of α, the yet-to-be-defined, α-stability will

allow for α-stable curves with non-reductive stabilizers. However, we believe that for a correct

definition of α-stability, it will still hold to be true that the stabilizers of all closed points in

Mg,n(α) will be reductive.

2.2. Deformation openness. Our first main result is the following theorem.

Theorem 2.7. For α ∈ (2/3−ε, 1], the stack Mg,n(α) of α-stable curves is algebraic and of

finite type over SpecC. Furthermore, for each critical value αc, we have open immersions:

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc − ε).

Let Ug,n(A∞) be the stack of flat, proper families of curves (π : C → T, {σi}ni=1), where the

sections {σi}ni=1 are distinct and lie in the smooth locus of π, the line bundle ωC/T (Σn
i=1σi) is

relatively ample, and the geometric fibers of π are n-pointed curves of arithmetic genus g with

only A-singularities. Since Ug,n(A∞) parameterizes canonically polarized curves, Ug,n(A∞) is

algebraic and of finite type over C. For example, the proof of [Edi00, Theorem 3.2] goes through
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with minor modifications to show that Ug,n(A∞) is a quotient of a locally closed subscheme of

an appropriate Hilbert scheme of some projective space PN by PGL(N + 1).

Let Ug,n(A`) ⊂ Ug,n(A∞) be the open substack parameterizing curves with at worst A1, . . . , A`
singularities. We will show that each Mg,n(α) can be obtained from a suitable Ug,n(A`) by

excising a finite collection of closed substacks. As a result, we obtain a proof of Theorem 2.7.

Definition 2.8. Let T Ak ,BAk1/Ak2 ,WAk denote the following constructible subsets of Ug,n(A∞):

T Ak := Locus of curves containing an Ak-attached elliptic tail.

BAk1/Ak2 := Locus of curves containing an Ak1/Ak2-attached elliptic chain.

WAk := Locus of curves containing an Ak-attached Weierstrass chain.

With this notation, we can describe our stability conditions (set-theoretically) as follows:

Mg,n(9/11+ε) = Ug,n(A1)

Mg,n(9/11) = Ug,n(A2)

Mg,n(9/11−ε) =Mg,n(9/11)− T A1

Mg,n(7/10) = Ug,n(A3)−
⋃

i∈{1,3}

T Ai

Mg,n(7/10−ε) =Mg,n(7/10)− BA1/A1

Mg,n(2/3) = Ug,n(A4)−
⋃

i∈{1,3,4}

T Ai −
⋃

i,j∈{1,4}

BAi/Aj

Mg,n(2/3−ε) =Mg,n(2/3)−WA1

Here, when we writeMg,n(9/11)−T A1 , we mean of courseMg,n(9/11)−
(
T A1 ∩Mg,n(9/11)

)
,

and similarly for each of the subsequent set-theoretic subtractions.

We must show that at each stage the collection of loci T Ak , BAk1/Ak2 , andWAk that we excise

is closed. We break this analysis into two steps: In Corollaries 2.11 and 2.12, we analyze how

the attaching singularities of an α-unstable subcurve degenerate, and in Lemmas 2.13 and 2.14,

we analyze degenerations of α-unstable curves. We combine these results to prove the desired

statement in Proposition 2.15.

Definition 2.9 (Inner/Outer Singularities). We say that an Ak-singularity p ∈ C is outer if

it lies on two distinct irreducible components of C, and inner if it lies on a single irreducible

component. (N.B. If k is even, then any Ak-singularity is necessarily inner.)

Suppose C → ∆ is a family of curves with at worst A-singularities, where ∆ is the spectrum of

a DVR. Denote by Cη̄ the geometric generic fiber and by C0 the central fiber. We are interested

in how the singularities of Cη̄ degenerate in C0. By deformation theory, an Ak-singularity can

deform to a collection of {Ak1 , . . . , Akr} singularities if and only if
∑r

i=1(ki + 1) ≤ k+ 1. In the

following proposition, we refine this result for outer singularities.

Proposition 2.10. Let p ∈ C0 be an Am-singularity, and suppose that p is the limit of an

outer singularity q ∈ Cη̄. Then p is outer (in particular, m is odd) and each singularity of

Cη̄ that approaches p must be outer and must lie on the same two irreducible components of
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Cη̄ as q. Moreover, the collection of singularities approaching p is necessarily of the form

{A2k1+1, A2k2+1, . . . , A2kr+1}, where
∑r

i=1(2ki + 2) = m + 1, and there exists a simultaneous

normalization of the family C → ∆ along this set of generic singularities.

Proof. Suppose q is an A2k1+1-singularity. We may take the local equation of C around p to be

y2 = (x− a1(t))2k1+2
r∏
i=2

(x− ai(t))mi , where 2k1 + 2 +
r∑
i=2

mi = m+ 1.

By assumption, the general fiber of this family has at least two irreducible components. It

follows that each mi must be even. Thus, we can rewrite the above equation as

(2.1) y2 =
r∏
i=1

(x− ai(t))2ki+2,

where k1, k2, . . . , kr satisfy
∑r

i=1(2ki+2) = m+1. It now follows by inspection that Cη̄ contains

outer singularities {A2k1+1, A2k2+1, . . . , A2kr+1} joining the same two irreducible components of

Cη̄ and approaching p ∈ C0. Clearly, the normalization of the family (2.1) exists and is a union

of two smooth families over ∆. �

Using the previous proposition, we can understand how the attaching singularities of a sub-

curve may degenerate.

Corollary 2.11. Let (π : C → ∆, {σi}ni=1) be a family of curves in Ug,n(A∞). Suppose that τ is

a section of π such that τ(η̄) ∈ Cη̄ is a disconnecting A2k+1-singularity of the geometric generic

fiber. Then τ(0) ∈ C0 is also a disconnecting A2k+1-singularity.

Proof. By assumption, τ(η̄) is outer and joins two irreducible components that do not meet

elsewhere. By Proposition 2.10, τ(0) cannot be a limit of any singularities of Cη̄ other than τ(η̄)

and so must remain an A2k+1-singularity. The normalization of C along τ now separates C into

two connected components. Thus τ(0) is disconnecting. �

Corollary 2.12. Let (π : C → ∆, {σi}ni=1) be a family of curves in Ug,n(A∞). Suppose that

τ1, τ2 are sections of π such that τ1(η̄), τ2(η̄) ∈ Cη̄ are A2k1+1 and A2k2+1-singularities of the

geometric generic fiber. Suppose also that the normalization of Cη̄ along τ1(η̄)∪ τ2(η̄) consists of

two connected components, while the normalization of Cη̄ along either τ1(η̄) or τ2(η̄) individually

is connected. Then we have two possible cases for the limits τ1(0) and τ2(0):

(1) τ1(0) and τ2(0) are distinct A2k1+1 and A2k2+1-singularities, respectively, or

(2) τ1(0) = τ2(0) is an A2k1+2k2+3-singularity.

Proof. Our assumptions imply that the singularities τ1(η̄) and τ2(η̄) are outer and are the only

two singularities connecting the two connected components of the normalization of Cη̄ along

τ1(η̄) ∪ τ2(η̄). By Proposition 2.10, these two singularities cannot collide with any additional

singularities of Cη̄ in the special fiber. If τ1(η̄) and τ2(η̄) themselves do not collide, we have case

(1). If they do collide, then, applying Proposition 2.10 once more, we have case (2). �

Lemma 2.13 (Limits of tails and bridges).

(1) Let (H → ∆, τ1) be a family in U1,1 whose generic fiber is an elliptic tail. Then the

special fiber (H, p) is an elliptic tail.
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(2) Let (H → ∆, τ1, τ2) be a family in U1,2 whose generic fiber is an elliptic bridge. Then

the special fiber (H, p1, p2) satisfies one of the following conditions:

a (H, p1, p2) is an elliptic bridge.

b (H, p1, p2) contains an A1-attached elliptic tail.

3 Let (H → ∆, τ1) be a family in U2,1 whose generic fiber is a Weierstrass tail. Then the

special fiber (H, p) satisfies one of the following conditions:

a (H, p) is a Weierstrass tail.

b (H, p) contains an A1 or A3-attached elliptic tail, or an A1/A1-attached elliptic

bridge.

Proof. We prove case (3) leaving (1) and (2) to the reader. Observe that the special fiber (H, p)

is a curve of arithmetic genus 2 with ωH(p) ample and h0(ωH(−2p)) ≥ 1 by semicontinuity.

Since ωH(p) has degree three, H has at most three components, and the possible topological

types of H are listed in Figure 6. One sees immediately that if H does not contain an A1 or

A3-attached elliptic tail or an A1/A1-attached elliptic bridge, there are only three possibilities

for the topological type of H: either H is irreducible or H has topological type (A) or (B).

However, topological types (A) and (B) do not satisfy h0(ωH(−2p)) ≥ 1. Finally, if (H, p) is

irreducible, then it must be a Weierstrass tail. Indeed, the linear equivalence ωH ∼ 2p follows

immediately from the corresponding linear equivalence on the general fiber. �

2 1

1

1

1

1

1

(A) (B)

Figure 6. Topological types of curves in U2,1(A∞). For convenience, we have

suppressed the data of inner singularities, and we record only the arithmetic

genus of each component and the outer singularities (which are either nodes

or tacnodes, as indicated by the picture). Components without a label have

arithmetic genus zero.

Lemma 2.14 (Limits of chains).

(1) Let (H → ∆, τ1, τ2) be a family in U2r−1,2 whose generic fiber is an elliptic chain of

length r. Then the special fiber (H, p1, p2) satisfies one of the following conditions:

a (H, p1, p2) contains an A1/A1-attached elliptic chain of length ≤ r.
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b (H, p1, p2) contains an A1-attached elliptic tail.

(2) Let (H → ∆, τ) be a family in U2r,1 whose generic fiber is a Weierstrass chain of length

r. Then the special fiber satisfies one of the following conditions:

a (H, p) contains an A1-attached Weirstrass chain of length ≤ r
b (H, p) contains an A1/A1-attached elliptic chain of length < r.

c (H, p) contains an A1 or A3-attached elliptic tail.

Proof. We prove case (2) leaving (1) to the reader. To begin, let σ1 be the section picking

out the marked points, and let τ1, . . . , τr−1 be the sections picking out the attaching tacnodes

in the general fiber. By Corollary 2.11, the limits τ1(0), . . . , τr−1(0) remain tacnodes, so the

normalization φ : H̃ → H along τ1, . . . , τr−1 is well-defined. We obtain r−1 families of 2-pointed

curves of arithmetic genus 1 and a single family of 1-pointed curves of genus 2:

H̃ =
r−1∐
i=1

(Ei, σ2i−1, σ2i)
∐

(Er, σ2r−1), where φ−1(γi) = {σ2i, σ2i+1}.

Denote the central fiber of H̃/∆ by
∐r−1
i=1 (Ei, q2i−1, q2i)

∐
(Er, q2r−1). The relative ampleness

of ωH/∆(σ1) implies that ωE1(q1 + 2q2) is ample on E1, ωEi(2q2i−1 + 2q2i) is ample on Ei for

i = 2, . . . , r − 1, and ωEr(2q2r−1) is ample on Er. It follows that either (Ei, q2i−1, q2i) is an

elliptic bridge for each 1 ≤ i ≤ r− 1 and (Er, q2r−1) is a Weierstrass tail, or one of the following

must hold:

a (Er, q2r−1) = (P1, q2r−1, p2r−1) ∪ (E′r, q
′
2r−1)/(p2r−1 ∼ q′2r−1), where (E′r, q

′
2r−1) is a

Weierstrass tail, or for some 1 ≤ i ≤ r − 1:

b (Ei, q2i−1, q2i) = (P1, q2i−1, p2i−1) ∪ (E′i, q
′
2i−1, q2i)/(p2i−1 ∼ q′2i−1), where (E′i, q

′
2i−1, q2i)

is an elliptic bridge.

c (Ei, q2i−1, q2i) = (E′i, q2i−1, q
′
2i) ∪ (P1, p2i, q2i)/(q

′
2i ∼ p2i), where (E′i, q2i−1, q

′
2i) is an

elliptic bridge.

d (Ei, q2i−1, q2i) = (P1, q2i−1, p2i−1)∪(E′i, q
′
2i−1, q

′
2i)∪(P1, p2i, q2i)/(p2i−1 ∼ q′2i−1, q

′
2i ∼ p2i),

where (E′i, q
′
2i−1, q

′
2i) is an elliptic bridge.

In the case (a) (resp., (b)), we say that Er (resp., Ei) sprouts on the left. In the case (c) (resp., d),

we say that Ei sprouts on the right (resp., sprouts on the left and right). Note that if Er (resp.,

E1) sprouts at all, then Er (resp., E1) contains an A1-attached Weierstrass tail (resp., A1/A1-

attached elliptic bridge). Similarly, if Ei sprouts on both the left and right (2 ≤ i ≤ r− 1), then

Ei contains an A1/A1-attached elliptic bridge. Thus, we may assume without loss of generality

that E1 and Er do not sprout and that some Ei (2 ≤ i ≤ r − 1) sprouts on the left or right,

but not both. We now observe that any collection {Es, . . . , Es+t} such that either Es sprouts

on the left or s = 1, either Es+t sprouts on the right or s + t = r, and Ek does not sprout for

s < k < s+ t, contains an A1/A1-attached elliptic chain of length t. �

Proposition 2.15. Using the notation introduced in Definition 2.8, we have:

(1) T A1 ∪ T Am is closed in Ug,n(A∞) for any odd m.

(2) BA1/A1 is closed in Ug,n(A∞)−
⋃
i∈{1,3} T Ai.

(3) T Am is closed in Ug,n(Am) for any even m.

(4) BAm/Am and BA1/Am are closed in Ug,n(Am)− T A1 − BA1/A1 for any even m.

(5) WAm is closed in Ug,n(A∞)−
⋃
i∈{1,3} T Ai − BA1/A1 for any odd m.
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Proof. The given loci are obviously constructible, so it suffices to show that they are closed

under specialization. For (1), let (C → ∆, {σi}ni=1) be a family in Ug,n(A∞) whose generic fiber

lies in T A2k+1 . Possibly after a finite base change, let τ be the section picking out the attaching

A2k+1-singularity of the elliptic tail in the generic fiber. By Corollary 2.11, the limit τ(0) is also

A2k+1-singularity. Consider the normalization C̃ → C along τ . Let H ⊂ C̃ be the component

whose generic fiber is an elliptic tail and let α be the preimage of τ on H. Then ωH((k + 1)α)

is relatively ample. We conclude that either ωH0(α(0)) is ample, or α(0) lies on a rational curve

attached nodally to the rest of H0. In the former case, (H0, α(0)) is an elliptic tail by Lemma

2.13, so C0 contains an elliptic tail with A2k+1-attaching, as desired. In the latter case, H0

contains an A1-attached elliptic tail. We conclude that C0 ∈ T A1 ∪ T A2k+1 , as desired.

For (2), let (C → ∆, {σi}ni=1) be a family in Ug,n(A∞) whose generic fiber lies in BA1/A1

Possibly after a finite base change, let τ1, τ2 be the sections picking out the attaching nodes of

a length r elliptic chain in the general fiber. By Proposition 2.10, τ1(0) and τ2(0) either remain

nodes, or, if r = 1, can coalesce to form an outer A3-singularity. In either case there exists a

normalization of C along τ1 and τ2. Since Cη̄ becomes separated after normalizing along τ1 and

τ2, we conclude that the limit of the elliptic chain is a connected component of C0 attached

either along two nodes, or, only when r = 1, along a separating A3-singularity. In the former

case, C0 has an elliptic chain by Lemma 2.14. In the latter case, C0 has arithmetic genus 1

connected component A3-attached to the rest of the curve, so that C0 ∈ T A1 ∪ T A3 .

For (3) and (4), we argue as in (1) and (2), respectively, making use of the observation that

in Ug,n(Am), the limit of an Am-singularity must be an Am-singularity. The proof of (5) is

essentially identical to that of (1), using Lemma 2.13. �

Proof of Theorem 2.7. For αc ∈ {9/11, 7/10, 2/3}, Proposition 2.15 implies that Mg,n(αc) is

obtained by excising closed substacks from Ug,n(A2), Ug,n(A3),Ug,n(A4), respectively. Next,

observe that the locus of curves with αc-critical singularities is closed in Mg,n(αc). Using the

fact that

Mg,n(αc + ε) =Mg,n(αc) r {curves with αc-critical singularities},
we conclude thatMg,n(αc+ε) ↪→Mg,n(αc) is an open immersion. Finally, applying Proposition

2.15 once more, we see that each Mg,n(αc − ε) is obtained by excising closed substacks from

Mg,n(αc). This finishes the proof. �

2.3. Properties of α-stability. In this section, we record several elementary properties of

α-stability that will be needed in subsequent arguments. Recall that if (C, {pi}ni=1) is a Deligne-

Mumford stable curve and q ∈ C is a node, then the pointed normalization (C̃, {pi}ni=1, q1, q2)

of C at q is Deligne-Mumford stable. The same statement holds for α-stable curves.

Lemma 2.16. Suppose (C, {pi}ni=1) is an α-stable curve and q ∈ C is a node. Then the pointed

normalization (C̃, {pi}ni=1, q1, q2) of C at q is α-stable.

Proof. Follows immediately from the definition of α-stability. �

Unfortunately, the converse of Lemma 2.16 is false. Nodally gluing two marked points of an

α-stable curve may fail to preserve α-stability if the two marked points are both on the same

component, or both on rational components – see Figure 7. The following lemma says that these

are the only problems that can arise.
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Lemma 2.17.

(1) If (C̃1, {pi}ni=1, q1) and (C̃2, {pi}ni=1, q2) are α-stable curves, then

(C̃1, {pi}ni=1, q1) ∪ (C̃2, {pi}ni=1, q2)/(q1 ∼ q2)

is α-stable.

(2) If (C̃, {pi}ni=1, q1, q2) is an α-stable curve, then

(C̃, {pi}ni=1, q1, q2)/(q1 ∼ q2)

is α-stable provided one of the following conditions hold:

• q1 and q2 lie on disjoint irreducible components of C̃,

• q1 and q2 lie on distinct irreducible components of C̃, and at least one of these

components is not a smooth rational curve.

(A)

q1
q2

q2q1

(B)

Figure 7. In (A), two marked points on a genus 0 tail (resp., two conjugate

points on an elliptic tail) are glued to yield an elliptic tail (resp., a Weierstrass

tail). In (B), two marked points on distinct rational components are glued to

yield an elliptic bridge.

Proof. Let C := (C̃, q1, q2)/(q1 ∼ q2), and let φ : C̃ → C be the gluing morphism which identifies

q1, q2 to a node q ∈ C. It suffices to show that if E ⊂ C is an α-unstable curve, then φ−1(E)

is an α-unstable subcurve of C̃. The key observation is that any α-unstable subcurve E has

the following property: If E1, E2 ⊂ E are two distinct irreducible components of E, then the

intersection E1∩E2 never consists of a single node. Furthermore, if one of E1 or E2 is irrational,

then the intersection E1 ∩ E2 does not contain any nodes. For elliptic tails, this statement is

vacuous since elliptic tails are irreducible. For elliptic and Weierstrass chains, it follows from

examining the topological types of elliptic bridges and Weierstrass tails (see Figure 6). From

this observation, it follows that no α-unstable E ⊂ C can contain both branches of q. Indeed,

the hypotheses of (1) and (2) each imply that either the two branches of the node q ∈ C lie

on distinct irreducible components whose intersection is precisely q, or else that that the two

branches lie on distinct irreducible components, one of which is irrational. Thus, we may assume

that E ⊂ C is disjoint from q or contains only one branch of q.

If E ⊂ C is disjoint from q, then φ−1 is an isomorphism in a neighborhood of E and the

statement is clear. If E ⊂ C contains only one branch of the node q, then q must be an

attaching point of E. We may assume without loss of generality that E contains the branch
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labeled by q1. Now φ−1(E) → E is an isomorphism away from q1 and sends q1 to the node q.

Since an α-unstable curve with nodal attaching is also α-unstable with marked point attaching,

φ−1(E) is an α-unstable subcurve of C̃. �

Corollary 2.18. Suppose that (C, {pi}ni=1, q1) is 2
3 -stable and (E, q′1) is a Weierstrass chain.

Then (C ∪ E, {pi}ni=1)/(q1 ∼ q′1) is 2
3 -stable.

Proof. This follows immediately from Lemma 2.17. �

Next, we consider a question which does not arise for Deligne-Mumford stable curves: Suppose

(C, {pi}ni=1) is an α-stable curve and q ∈ C is a non-nodal singularity with m ∈ {1, 2} branches.

When is the pointed normalization (C̃, {pi}ni=1, {qi}mi=1) of C at q α-stable? One obvious obstacle

is that ω
C̃

(Σn
i=1pi + Σm

i=1qi) need not be ample. Indeed, one or both of the marked points qi
may lie on a smooth P1 meeting the rest of the curve in a single node. We thus define the stable

pointed normalization of (C, {pi}ni=1) to be the (possibly disconnected) curve obtained from C̃ by

contracting these semistable P1’s. This is well-defined except in several degenerate cases: First,

when (g, n) = (1, 1), (1, 2), (2, 1), the stable pointed normalization of a cuspidal, tacnodal, and

ramphoid cuspidal curve is a point. In these cases, we regard the stable pointed normalization

as being undefined. Second, in the tacnodal case, it can happen that (C̃, {pi}ni=1, {qi}mi=1) has

two connected components, one of which is a smooth 2-pointed P1. In this case, we define the

stable pointed normalization to be the curve obtained by deleting this component and taking

the stabilization of the remaining connected component.

In general, the stable pointed normalization of an α-stable curve at a non-nodal singularity

need not be α-stable. Nevertheless, there is one important case where this statement does hold,

namely when αc is a critical value and q ∈ C is an αc-critical singularity.

Lemma 2.19. Let (C, {pi}ni=1) be an n-pointed curve with ωC(
∑n

i=1 pi) ample, and suppose

q ∈ C is an αc-critical singularity. Then the stable pointed normalization of (C, {pi}ni=1) at q is

αc-stable if and only if (C, {pi}ni=1) is αc-stable.

Proof. Follows from the definition of α-stability by an elementary case-by-case analysis. �

2.4. αc-closed curves. In Theorem 2.22, we will give an explicit characterization of the closed

points of Mg,n(αc) for a critical value αc ∈ {9/11, 7/10, 2/3} as αc-closed curves, which we

proceed to define.

Definition 2.20 (αc-atoms).

(1) A 9
11 -atom is a 1-pointed curve of arithmetic genus one obtained by gluing

SpecC[x, y]/(y2−x3) and SpecC[n] via x = n−2, y = n−3, and marking the point n = 0.

(2) A 7
10 -atom is a 2-pointed curve of arithmetic genus one obtained by gluing

SpecC[x, y]/(y2− x4) and SpecC[n1]
∐

SpecC[n2] via x = (n−1
1 , n−1

2 ), y = (n−2
1 ,−n−2

2 ),

and marking the points n1 = 0 and n2 = 0.

(3) A 2
3 -atom is a 1-pointed curve of arithmetic genus two obtained by gluing

SpecC[x, y]/(y2−x5) and SpecC[n] via x = n−2, y = n−5, and marking the point n = 0.

We will often abuse notation by simply writing E to refer to the αc-atom (E, q) if αc ∈
{2/3, 9/11} (resp., (E, q1, q2) if αc = 7/10).
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Every αc-atom E satisfies Aut(E) ' Gm, where the action of Gm = SpecC[t, t−1] is given by

(2.2)

For αc = 9/11: x 7→ t−2x, y 7→ t−3y, n 7→ tn.

For αc = 7/10: x 7→ t−1x, y 7→ t−2y, n1 7→ tn1, n2 7→ tn2.

For αc = 2/3: x 7→ t−2x, y 7→ t−5y, n 7→ tn.

A3

q1 q2q

A2

q

A4

Figure 8. A 9
11 -atom, 7

10 -atom, and 2
3 -atom, respectively.

In order to describe the closed points ofMg,n(αc) precisely, we need the following terminology.

We say that C admits a decomposition C = C1 ∪ · · · ∪ Cr if C1, . . . , Cr are proper subcurves

whose union is all of C, and either Ca ∩ Cb = ∅ or Ca meets Cb nodally. When (C, {pi}ni=1) is

an n-pointed curve, and C = C1 ∪ · · · ∪Cr is a decomposition of C, we always consider each Ca
as a pointed curve by taking as marked points the subset of {pi}ni=1 supported on Ca and the

attaching points Ca ∩ (C\Ca).

Definition 2.21 (αc-closed curves). Let αc be a critical value. We say that an n-pointed curve

(C, {pi}ni=1) is αc-closed if there is a decomposition C = K ∪ E1 ∪ · · · ∪ Er, where

1 E1, . . . , Er are αc-atoms.

2 K is an (αc+ε)-stable curve containing no nodally attached αc-tails.

3 K is a closed curve in the stack of (αc+ε)-stable curves.

We call K the core of (C, {pi}ni=1), and we call the decomposition C = K ∪ E1 ∪ · · · ∪ Er the

canonical decomposition of C. As always, we consider K as a pointed curve marked by the union

of {pi}ni=1 ∩K and K ∩ (C rK); we allow the possibility that K is disconnected or empty.

We can now state the main result of this section.

Theorem 2.22 (Characterization of αc-closed curves). Let αc be a critical value. An αc-stable

curve (C, {pi}ni=1) is a closed point of Mg,n(αc) if and only if (C, {pi}ni=1) is αc-closed.

To prove the above theorem, we need several preliminary lemmas. We state these results for

every critical value αc ∈ {9/11, 7/10, 2/3}, but just as in the case of the theorem, we provide a

proof only for αc = 2/3. The cases of larger critical values are easier, and can also be deduced

from the description of c-semistable curves of Hassett and Hyeon [HH13] in the case of αc = 7/10

and the description of weakly pseudostable curves of Hyeon and Morrison [HM10] in the case of

αc = 9/11.

Lemma 2.23. An αc-tail is closed in the stack of αc-stable curves if and only if it is an αc-atom.

Proof for αc = 2/3. First, we show that if (E, q) is any Weierstrass tail, then (E, q) admits an

isotrivial specialization to a 2
3 -atom. To do so, we can write any Weierstrass tail as a degree 2

cover of P1 given by an equation

y2 = x5 + a3x
3 + a2x

2 + a1x+ a0, where ai ∈ C, and
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where the marked point q corresponds to x = ∞. For any λ ∈ C∗, acting by λ · (x, y) =

(λ−2x, λ−5y), we see that this cover is isomorphic to

y2 = x5 + λ4a3x
3 + λ6a2x

2 + λ8a1x+ λ10a0.

Letting λ→ 0, we obtain an isotrivial specialization of (E, q) to the double cover y2 = x5, which

is a 2
3 -atom.

Next, we show that if (E, q) is a 2
3 -atom, then (E, q) does not admit any nontrivial isotrivial

specializations in M2,1(2/3). Let (E → ∆, σ) be an isotrivial specialization in M2,1(2/3) with

generic fiber isomorphic to (E, q). Let τ be the section of E → ∆ which picks out the unique

ramphoid cusp of the generic fiber. Since the limit of a ramphoid cusp is a ramphoid cusp in

M2,1(2/3), τ(0) is also ramphoid cusp. Now let τ : Ẽ → E be the simultaneous normalization of

E along τ , and let τ̃ and σ̃ be the inverse images of τ and σ respectively. Then (Ẽ → ∆, τ̃ , σ̃) is

an isotrivial specialization of 2-pointed curves of arithmetic genus 0 with smooth general fiber.

The fact that ωE/∆(σ) is relatively ample on E implies that ωẼ/∆(3τ̃ + σ̃) is relatively ample on

Ẽ , which implies that the special fiber of Ẽ is irreducible. It follows that (Ẽ → ∆, τ̃ , σ̃) is trivial.

Finally, since the generic fiber of E has trivial crimping at the ramphoid cusp, we conclude that

E is isotrivial. �

Lemma 2.24. Suppose (C, {pi}ni=1) is a closed point ofMg,n(αc+ε). Then (C, {pi}ni=1) remains

closed in Mg,n(αc) if and only if (C, {pi}ni=1) contains no nodally attached αc-tails.

Proof for αc = 2/3. To lighten notation, we often omit marked points {pi}ni=1 in the rest of the

proof. First, we show that if (C, {pi}ni=1) has A1-attached Weierstrass tail, then it does not

remain closed in Mg,n(2/3). Suppose we have a decomposition C = K ∪ Z, where (Z, q) is

an A1-attached Weierstrass tail. By Lemma 2.23, (Z, q) admits an isotrivial specialization to a
2
3 -atom (E, q1). We may glue this specialization to the trivial family K×∆ to obtain a nontrivial

isotrivial specialization C  K ∪E, where E is nodally attached at q1. By Lemma 2.17, K ∪E
is 2

3 -stable, so this is a nontrivial isotrivial specialization in Mg,n(2/3).

Next, we show that if (C, {pi}ni=1) has no A1-attached Weierstrass tails, then it remains closed

in Mg,n(2/3). In other words, if there exists a nontrivial isotrivial specialization C  C0, then

C necessarily contains a nodally attached Weierstrass tail. To begin, note that the special

fiber C0 of the nontrivial isotrivial specialization C → ∆ must contain at least one ramphoid

cusp. Otherwise, (C → ∆, {σi}ni=1) would constitute a nontrivial isotrivial specialization in

Mg,n(2/3+ε), contradicting the hypothesis that (C, {pi}ni=1) is closed in Mg,n(2/3+ ε). For

simplicity, let us assume that the special fiber C0 contains a single ramphoid cusp q. Locally

around this point, we may write C as

y2 = x5 + a3(t)x3 + a2(t)x2 + a1(t)x+ a0(t),

where t is the uniformizer of ∆ at 0 and ai(0) = 0. By [CML13, Section 7.6], after possibly a

finite base change, there exists a (weighted) blow-up φ : C̃ → C such that the special fiber C̃0 is

isomorphic to the normalization of C at q attached nodally to a curve T , where T is defined by

an equation y2 = x5 + b3x
3z2 + b2x

2z3 + b1xz
4 + b0z

5 on P(2, 5, 2) for some [b3 : b2 : b1 : b0] ∈
P(4, 6, 8, 10) (depending on the ai(t)) and such that T is attached to C at [x : y : z] = [1 : 1 : 0].

Evidently, T is a genus 2 double cover of P1 via the projection [x : y : z] 7→ [x : z] and
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[x : y : z] = [1 : 1 : 0] is a ramification point of this cover. It follows that C̃0 has a Weierstrass

tail.

Now let C̃ → C̃s be the stabilization morphism contracting all P1’s in the central fiber that

meet the rest of C̃0 in only two nodes. The central fiber of C̃s is now isomorphic to the nodal

union of the stable pointed normalization of C0 at q and the Weierstrass tail T . By Lemma

2.19 and Corollary 2.18, (C̃s0, {pi}ni=1) is αc-stable. Since it contains no ramphoid cusps, it

is also (αc + ε)-stable. By hypothesis, (C, {pi}ni=1) is closed in Mg,n(αc + ε), so the family

(C̃s → ∆, {σi}ni=1) must be trivial. This implies that the generic fiber (C, {pi}ni=1) must have a

nodally attached Weierstrass tail. �

The following lemma says that one can use isotrivial specializations to replace αc-critical

singularities and αc-tails by αc-atoms.

Lemma 2.25. Let (C, {pi}ni=1) be an n-pointed curve, and let E be the αc-atom.

(1) Suppose q ∈ C is an αc-critical singularity. Then there exists an isotrivial specialization

C  C0 = C̃ ∪E to an n-pointed curve C0 which is the nodal union of E and the stable pointed

normalization C̃ of C at q along the marked point(s) of E and the pre-image(s) of q in C̃.

(2) Suppose C decomposes as C = K∪Z, where Z is an αc-tail. Then there exists an isotrivial

specialization C  C0 = K ∪E to an n-pointed curve C0 which is the nodal union of K and E

along the marked point(s) of E and K ∩ Z.

Proof for αc = 2/3. For (1), let C×∆ be the trivial family, let C̃ → C×∆ be the normalization

along q × ∆, and let C̃′ → C̃ be the blow-up of C̃ at the point lying over (q, 0). Let τ denote

the strict transform of q × ∆ on C̃′, and note that τ passes through a smooth point of the

exceptional divisor. A local calculation shows that there exists a finite map ψ : C̃′ → C′ such

that ψ is an isomorphism on C̃′−τ , so that C′ has a ramphoid cusp along ψ◦τ , and the ramphoid

cuspidal rational tail in the central fiber is an αc-atom, i.e., has trivial crimping. Blowing down

any semistable P1’s in the central fiber of C′ → ∆ (these appear, for example, when q lies on

an unmarked P1 attached nodally to the rest of the curve), we arrive at the desired isotrivial

specialization. For (2), note that there exists an isotrivial specialization (Z, q1)  (E, q1) by

Lemma 2.23. Gluing this to the trivial family (K × ∆, q1 × ∆) gives the desired isotrivial

specialization. �

Proof of Theorem 2.22 for αc = 2/3. First, we show that every 2
3 -closed curve (C, {pi}ni=1) is a

closed point of Mg,n(2/3). Let (C → ∆, {σi}ni=1) be any isotrivial specialization of (C, {pi}ni=1)

in Mg,n(2/3); we will show it must be trivial. Let C = K ∪ E1 ∪ · · · ∪ Er be the canonical

decomposition and let qi = K ∩ Ei. Each qi is a disconnecting node in the general fiber of

C → ∆, so qi specializes to a node in the special fiber by Corollary 2.11. Possibly after a

finite base change, we may normalize along the corresponding nodal sections to obtain isotrivial

specializations K and E1, . . . , Er. By Lemma 2.16, K is a family inMg−2r,n+r(2/3) and E1, . . . , Er
are families inM2,1(2/3). Since K contains no Weierstrass tails in the general fiber, it is trivial

by Lemma 2.24. The families E1, . . . , Er are trivial by Lemma 2.23. It follows that the original

family (C → ∆, {σi}ni=1) is trivial, as desired.

Next, we show that if (C, {pi}ni=1) ∈ Mg,n(2/3) is a closed point, then (C, {pi}ni=1) must

be 2
3 -closed. First, we claim that every ramphoid cusp of C must lie on a nodally attached
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2
3 -atom. Indeed, if q ∈ C is a ramphoid cusp that does not lie on a nodally attached 2

3 -atom,

then Lemma 2.25 gives an isotrivial specialization (C, {pi}ni=1)  (C0, {pi}ni=1) in which C0

sprouts a nodally attached 2
3 -atom at q. Note that (C0, {pi}ni=1) is 2

3 -stable by Lemma 2.19

and Corollary 2.18, so this gives a nontrivial isotrivial specialization in Mg,n(2/3). Second,

we claim that C contains no nodally attached Weierstrass tails that are not 2
3 -atoms. Indeed,

if it does, then Lemma 2.25 gives an isotrivial specialization (C, {pi}ni=1)  (C0, {pi}ni=1) that

replaces this Weierstrass tail by a 2
3 -atom. Note that (C0, {pi}ni=1) is 2

3 -stable by Lemma 2.16

and Corollary 2.18, so this gives a nontrivial isotrivial specialization in Mg,n(2/3). It is now

easy to see that C is 2
3 -closed. Indeed, if E1, . . . , Er are the nodally attached 2

3 -atoms of C, then

the complement K has no ramphoid cusps and no nodally attached Weierstrass tails. Since K

is 2
3 -stable and has no ramphoid cusps, it is (2

3 +ε)-stable. Furthermore, K must be closed in

Mg,n(2/3+ε), since a nontrivial isotrivial specialization of K in Mg,n(2/3+ε) would induce a

nontrivial, isotrivial specialization of (C, {pi}ni=1) in Mg,n(2/3). We conclude that (C, {pi}ni=1)

is 2
3 -closed as desired. �

2.5. Combinatorial type of an αc-closed curve. In the previous section, we saw that every

αc-stable curve which is closed inMg,n(αc) has a canonical decomposition C = K∪E1∪· · ·∪Er
where E1, . . . , Er are the αc-atoms of C. We wish to use this decomposition to compute the local

VGIT chambers associated to C. For the two critical values αc ∈ {7/10, 9/11}, the pointed curve

K does not have infinitesimal automorphisms and does not affect this computation. However,

if αc = 2/3, then K may have infinitesimal automorphisms due to the presence of rosaries (see

Definition 2.26), which leads us to consider a slight enhancement of the canonical decomposition.

Once we have taken care of this wrinkle, we define the combinatorial type of an αc-closed curve

in Definition 2.31. The key point of this definition is that it establishes the notation that will

be used in carrying out the local VGIT calculations in Section 3.

Definition 2.26 (Rosaries). We say that (R, r1, r2) is a rosary of length ` if there exists a

surjective gluing morphism

γ :
∐̀
i=1

(Ri, q2i−1, q2i) ↪→ (R, r1, r2)

satisfying:

(1) (Ri, q2i−1, q2i) is a 2-pointed smooth rational curve for i = 1, . . . , `.

(2) γ(q2i) = γ(q2i+1) is an A3-singularity of R for i = 1, . . . , `− 1.

(3) γ(q1) = r1 and γ(q2`) = r2.

We say that (C, {pi}ni=1) has an Ak1/Ak2-attached rosary of length ` if there exists a gluing

morphism γ : (R, r1, r2) ↪→ (C, {pi}ni=1) such that

a (R, r1, r2) is a rosary of length `.

b For j = 1, 2, γ(rj) is an Akj -singularity of C, or if kj = 1 we allow γ(rj) to be a marked

point of (C, {pi}ni=1).

We say that C is a closed rosary of length ` if C has A3/A3-attached rosary γ : (R, r1, r2) ↪→ C

of length ` such that γ(r1) = γ(r2) is an A3-singularity of C.
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p1 p2

000 0

0

0

0

(A) (B)

Figure 9. Curve (A) is a rosary of length 3. Curve (B) is a closed rosary of

length 4.

Remark 2.27. An A1/A1-attached rosary of even length is an elliptic chain and thus can never

appear in an α-stable curve for α < 7/10−ε.

Remark 2.28. Note that if (R, r1, r2) is a rosary, then Aut(R, r1, r2) ' Gm. Hassett and Hyeon

showed that all infinitesimal automorphisms of (7/10−ε)-stable curves are accounted for by

rosaries [HH13, Section 8]. In fact, it is easy to see that if (C, {pi}ni=1) is a closed (7/10 − ε)-
stable curve with Aut(C, {pi}ni=1)◦ ' Gd

m, then there exists a decomposition C = C0∪R1∪· · ·∪Rd
where each Ri is an A1/A1-attached rosary of length 3.

In order to compute the local VGIT chambers for an αc-closed curve C, we introduce the

notion of an αc-link, which is simply a connected component E of C satisfying the following

three conditions: (i) E contains an αc-atom, (ii) Aut(C)◦ acts non-trivially on every irreducible

component of E, (iii) E is A1-attached to the rest of the curve. Clearly, a 9
11 -link is simply a

9
11 -atom, and a 7

10 -link is a chain of nodally attached 7
10 -atoms. We proceed to give an explicit

description of 2
3 -links.

Definition 2.29 (Links). A 2
3 -link of length ` is a 1-pointed curve (E, p) which admits a de-

composition

E = R1 ∪ · · · ∪R`−1 ∪ E` such that:

(1) qj := Rj ∩Rj+1, for j = 1, . . . , `− 2, and q`−1 := R`−1 ∩ E` is a node of E.

(2) q0 := p is a marked point of R1.

(3) (Rj , qj−1, qj) is a rosary of length 3 for j = 1, . . . , `− 1, and (E`, q`−1) is a 2
3 -atom.

When we refer to a 2
3 -link (E, p) as a subcurve of a larger curve, we always take it to be

A1-attached at p.

A4

p
A3 A3 A3 A3

Figure 10. A 2
3 -link of length 3. Each component above is a rational curve.

Now let C = K ∪E1∪ · · ·∪Er be the canonical decomposition of an αc-closed curve C, where

K is the core and Ei’s are αc-atoms (see Definition 2.21). Then each αc-atom of an αc-closed
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curve is a component of a unique αc-link of maximal length. When αc = 2/3, we make the

following definition.

Definition 2.30 (Secondary core). Suppose C = K∪E1∪. . .∪Er is the canonical decomposition

of an αc-closed curve C. For each αc-atom Ei, let Li be the maximal length αc-link containing

Ei. We call K ′ := C r (L1 ∪ · · · ∪ Lr) the secondary core of C, which we consider as a curve

marked with the points ({pi}ni=1 ∩K ′) ∪ (K ′ ∩ (C rK ′). The secondary core has the property

that any A1/A1-attached rosary R ⊆ K ′, satisfies R ∩ Li = ∅ for i = 1, . . . , r.

We can now define combinatorial types of 2
3 -closed curves. We refer the reader to Figure 11

for a graphical accompaniment of the following definition. One can define analogous notions for

αc = 9/11, 7/10 but we refrain from introducing them as they are only necessary in the proofs

of the statements in Section 3, which we will always prove only for the case of αc = 2/3 leaving

the easier cases of larger critical values to the reader.

Type A

Type B

Type C

p1

pn

K

A4

E1

A4

E2

A4

Er

A4

p1

A4 A4

Figure 11. Combinatorial types of 2
3 -closed curves.

Definition 2.31. A 2
3 -closed curve (C, {pi}ni=1) has combinatorial type

A If the secondary core K ′ is nonempty. In this case, we write

C = K ′ ∪ L1 ∪ · · · ∪ Lr

where for i = 1, . . . , r, Li =
⋃`i−1
j=1 Ri,j ∪ Ei is a 2

3 -link of length `i. In particular, Ei
is a 2

3 -atom and each Ri,j is a length 3 rosary such that Ri,1 meets K ′ at a node qi,0,
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Ri,j meets Ri,j+1 at a node qi,j , and Ri,`i−1 meets Ei in a node qi,`i−1. We denote the

tacnodes of the rosary Ri,j by τi,j,1 and τi,j,2, and the unique ramphoid cusp of Ei by ξi.

B If n = 1, g = 2` and (C, p1) is a 2
3 -link of length `, i.e. C = R1 ∪ · · · ∪ R`−1 ∪ E`,

where R1, . . . , R`−1 are rosaries of length 3 with p1 ∈ R1 and E` is a 2
3 -atom. For

j = 1, . . . , `−1, we label the tacnodes of Rj as τj,1 and τj,2, the node where Rj intersects

Rj+1 as qj , the node where R`−1 intersects E` as q`−1 and the unique ramphoid cusp of

E` as ξ.

C If n = 0, g = 2` + 2 and C is the nodal union of two 2
3 -links, i.e. C = E0 ∪ R1 ∪ · · · ∪

R`−1 ∪ E`, where E0, E` are 2
3 -atoms, and R1, . . . , R`−1 are rosaries of length 3. For

j = 1, . . . , `−2, Rj intersects Rj+1 at a node qj , E0 intersects R1 in a node q0, and R`−1

intersects E` in a node q`−1. We label the ramphoid cusps of E0, E` as ξ0, ξ`, and the

tacnodes of Rj as τj,1 and τj,2.

3. Local description of the flip

In this section, we give an étale local description of the open immersions

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc−ε)

from Theorem 2.7 at the critical value αc. Our main result says that, étale locally around

any closed point of Mg,n(αc), these inclusions are induced by a variation of GIT problem. In

Section 3.1, we collect several basic facts concerning local variation of GIT that will be used

in subsequent sections. In Section 3.2, we develop the necessary background material on local

quotient presentations and local VGIT in order to state our main result (Theorem 3.17). In

Section 3.3, we describe explicit coordinates on the formal miniversal deformation space of an

αc-closed curve. In Section 3.4, we use these coordinates to compute the associated VGIT

chambers and thus conclude the proof of Theorem 3.17.

In this section, just as in §2.4, we only prove the statements for αc = 2/3 as the reader should

have no difficulty in proving the αc = 9/11, 7/10 cases. Moreover, in a few instances where the

conclusion is purely of local interest in this text, we only include the statement in the case of

αc = 2/3. Our focus on αc = 2/3 is justified as this is the most difficult case and the larger

critical values are well-understood by the work of Hassett and Hyeon [HH09, HH13].

3.1. Preliminary facts about local VGIT. Here, we collect several basic facts concerning

variation of GIT for the action of a reductive group on an affine scheme that will be needed in

subsequent sections. In particular, we formulate a version of the Hilbert-Mumford criterion that

will be useful for computing the VGIT chambers associated to an αc-closed curve. We refer the

reader to [Tha96] and [DH98] for the general setup of variation of GIT.

Recall that if G is a reductive group acting on an affine scheme X = SpecA by σ : G×X →
X, there is a natural correspondence between G-linearizations of the structure sheaf OX and

characters χ : G → Gm = SpecC[t, t−1]. Precisely, a character χ defines a G-linearization L
of the structure sheaf OX as follows. The element χ∗(t) ∈ Γ(G,O∗G) induces a G-linearization

σ∗OX → p∗2OX defined by p∗1(χ∗(t))−1 ∈ Γ(G × X,O∗G×X). We can now associate to χ the

semistable loci Xss
L and Xss

L−1 (cf. [Mum65, Definition 1.7]). The following definition describes

explicitly the change in semistable locus as we move from χ to χ−1 in the character lattice of G.
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Definition 3.1 (VGIT (+)/(−)-chambers). Let G be a reductive group acting on an affine

scheme X = SpecA. Let χ : G→ Gm be a character and set

An := {f ∈ A | σ∗(f) = χ∗(t)−nf} = Γ(X,L⊗n)G.

We define the VGIT ideals associated to χ to be:

I+
χ := (f ∈ A | f ∈ An for some n > 0) and I−χ := (f ∈ A | f ∈ An for some n < 0).

The VGIT (+)-chamber and (−)-chamber of X associated to χ are the open subschemes

X+
χ := X rV(I+

χ ) ↪→ X and X−χ := X rV(I−χ ) ↪→ X.

Since the open subschemes X+
χ , X−χ are G-invariant, we also have stack-theoretic open immer-

sions

[X+
χ /G] ↪→ [X/G]←↩ [X−χ /G],

which we will refer to as the VGIT (+)/(−)-chambers of [X/G] associated to χ.

Remark 3.2. For an alternative characterization of X+
χ , note that χ−1 defines an action of G on

X × A1 via g · (x, s) = (g · x, χ(g)−1 · s). Then x ∈ X+
χ if and only if the orbit closure G · (x, 1)

does not intersect the zero section X × {0}.

It follows from the above definitions and [Mum65, Theorem 1.10] that the natural inclusions

of VGIT (+)/(−)-chambers induce projective morphisms of GIT quotients:

Proposition 3.3. Let L be the G-linearization of the structure sheaf on X corresponding to a

character χ. Then there are natural identifications of X+
χ and X−χ with the semistable loci Xss

L
and Xss

L−1, respectively. There is a commutative diagram

X+
χ

��

� � // X

��

X−χ?
_oo

��
X+
χ //G := Proj

⊕
d≥0Ad

// SpecA0 Proj
⊕

d≥0A−d =: X−χ //Goo

where X → SpecA0, X+
χ → X+

χ //G and X−χ → X−χ //G are GIT quotients. The restriction of

L to X+
χ (resp., L−1 to X−χ ) descends to line bundle O(1) on X+

χ //G (resp., O(1) on X−χ //G)

relatively ample over SpecA0. In particular, for every point x ∈ X+
χ ∪X−χ , the character of Gx

corresponding to L|BGx is trivial.

Definition 3.4. Recall that given a character χ : G → Gm and a one-parameter subgroup

ρ : Gm → G, the composition χ ◦ ρ : Gm → Gm is naturally identified with the integer n such

that (χ ◦ ρ)∗t = tn. We define the pairing of χ and ρ as 〈χ, ρ〉 = n.

Proposition 3.5 (Affine Hilbert-Mumford criterion). Suppose G is a reductive group over

SpecC acting on an affine scheme X = SpecA of finite type over SpecC. Let χ : G → Gm

be a character. Let x ∈ X(C). Then x /∈ X+
χ (resp., x /∈ X−χ ) if and only if there exists a

one-parameter subgroup ρ : Gm → G with 〈χ, ρ〉 > 0 (resp., 〈χ, ρ〉 < 0) such that limt→0 ρ(t) · x
exists.
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Proof. Consider the action of G on X×A1 induced by χ−1 as in Remark 3.2. Then x /∈ X+
χ if and

only if G · (x, 1)∩(X×{0}) 6= ∅. By the Hilbert-Mumford criterion [Mum65, Theorem 2.1], this

is equivalent to the existence of a one-parameter subgroup ρ : Gm → G such limt→0 ρ(t) ·(x, 1) ∈
X × {0}. We are done by observing that limt→0 ρ(t) · (x, 1) = limt→0(ρ(t) · x, t〈χ,ρ〉) ∈ X × {0}
if and only if limt→0 ρ(t) · x exists and 〈χ, ρ〉 > 0. �

The following are three immediate corollaries of Proposition 3.5:

Corollary 3.6. Let Gi be reductive groups acting on affine schemes Xi of finite type over SpecC
and χi : Gi → Gm be characters for i = 1, . . . , n. Consider the diagonal action of G =

∏
iGi on

X =
∏
iXi and the character χ =

∏
i χi : G→ Gm. Then

X rX+
χ =

n⋃
i=1

X1 × · · · × (Xi r (Xi)
+
χi)× · · · ×Xn,

X rX−χ =
n⋃
i=1

X1 × · · · × (Xi r (Xi)
−
χi)× · · · ×Xn.

Corollary 3.7. Let G be a reductive group over SpecC acting on an affine X = SpecA of

finite type over SpecC. Let χ : G → Gm be a character. Let Z ⊆ X be a G-invariant closed

subscheme. Then Z+
χ = X+

χ ∩ Z and Z−χ = X−χ ∩ Z.

Corollary 3.8. Let G be a reductive group with character χ : G→ Gm. Suppose G acts on an

affine scheme X = SpecA of finite type over SpecC. Let G◦ be the connected component of the

identity and χ◦ = χ|G◦. Then the VGIT chambers X+
χ , X

−
χ for the action of G on X are equal

to the VGIT chambers X+
χ◦ , X

−
χ◦ for action of G◦ on X.

Lemma 3.9. Let G be a reductive group with character χ : G → Gm and h : SpecA = X →
Y = SpecB be a G-invariant morphism of affine schemes finite type over SpecC. Assume that

A = B ⊗BG AG. Then h−1(Y +
χ ) = X+

χ and h−1(Y −χ ) = X−χ .

Proof. We use Proposition 3.5. If x /∈ X+
χ , then there exists ρ : Gm → G with 〈χ, ρ〉 > 0

such that x0 = limt→0 ρ(t) · x exists. It follows that h(x0) = limt→0 ρ(t) · h(x) exists, and so

h(x) /∈ Y +
χ . We conclude that h−1(Y +

χ ) ⊆ X+
χ . Conversely, suppose h(x) /∈ Y +

χ . Then there

exists ρ : Gm → G with 〈χ, ρ〉 > 0 such that limt→0 ρ(t) · h(x) exists. Since limt→0 ρ(t) · h(x)

exists and since both SpecA → SpecAG and SpecB → SpecBG are GIT quotients, there is a

commutative diagram

SpecC[t]

((

!!

&&
SpecA

h //

��

SpecB

��
SpecAG // SpecBG

Since the square is Cartesian, the map Gm = SpecC[t, t−1] → SpecA given by t 7→ ρ(t) · x
extends to SpecC[t]→ SpecA. It follows that x /∈ X+

χ . We conclude that X+
χ ⊆ h−1(Y +

χ ). �
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Lemma 3.10. Let G be a reductive group acting on a smooth affine variety W = SpecB

over SpecC. Let w ∈ W be a fixed point of G. Let χ : G → Gm be a character. There is

a Zariski-open affine neighborhood W ′ ⊆ W containing w and a G-invariant étale morphism

h : W ′ → T = SpecC[TW,w], where TW,w is the tangent space at w, such that

h−1(T+
χ ) = W ′+χ h−1(T−χ ) = W ′−χ .

Proof. The maximal ideal m ⊆ B of w ∈ W is G-invariant. Since G is reductive, there exists a

splitting m/m2 ↪→ m of the surjection m→ m/m2 of G-representations. The inclusion m/m2 ↪→
m ⊆ B induces a morphism on algebras Sym∗m/m2 → B which is G-equivariant which in

turns gives a G-equivariant morphism h : SpecB → T étale at w ∈ W . By applying Luna’s

Fundamental Lemma (see [Lun73]), there exists a G-invariant open affine W ′ = SpecB′ ⊆
SpecB containing w such that the diagram

SpecB′ //

��

SpecC[TW,w]

��
SpecB′G // SpecC[TW,w]G

is Cartesian with SpecB′G → SpecC[TW,w]G étale. By Lemma 3.9, the induced map h|W ′ : W ′ →
T satisfies h|−1

W ′(T
+
χ ) = W ′+χ and h|−1

W ′(T
−
χ ) = W ′−χ . �

3.2. Local quotient presentations.

Definition 3.11. Let X be an algebraic stack of finite type over SpecC, and let x ∈ X (C) be

a closed point. We say that f : W → X is a local quotient presentation around x if

(1) The stabilizer Gx of x is reductive.

(2) W = [SpecA/Gx], where A is a finite type C-algebra.

(3) f is étale and affine.

(4) There exists a point w ∈ W(C) such that f(w) = x and f induces an isomorphism

Gw ' Gx.

We sometimes write f : (W, w)→ (X , x) as a local quotient presentation to indicate the chosen

preimage of x. We say that X admits local quotient presentations if there exist local quotient

presentations around all closed points x ∈ X (C).

Lemma 3.12. For each α > 2/3−ε, Mg,n(α) admits local quotient presentations.

Proof. By Proposition 2.6, stabilizers of α-stable curves are reductive. Thus the result follows

directly from [AHR15, Theorem 1.2]. Alternatively, we can apply [AK15, §3.3], after we observe

that by Theorem 2.7, eachMg,n(α) can be realized as [X/G], where X is a non-singular locally

closed subscheme of the Hilbert scheme of some PN and G = PGL(N + 1) (cf. the proof of

[Edi00, Theorem 3.2]). �

Next, we show how to use the data of a line bundle L on a stack X to define VGIT chambers

associated to every local quotient presentation of X . In this situation, note that if x ∈ X (C) is

any point, then there is a natural action of the automorphism group Gx on the fiber L|BGx that

induces a character χL : Gx → Gm.
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Definition 3.13 (VGIT chambers of a local quotient presentation). Suppose X is an algebraic

stack of finite type over SpecC and let L be a line bundle on X . Let x ∈ X (C) be a closed point.

If f : W = [SpecA/Gx]→ X is a local quotient presentation around x, we define the chambers

of W associated to L to be the VGIT (+)/(−)-chambers

W+
L ↪→W ←↩W−L

of W associated to the character χL : Gx → Gm (see Definition 3.1).

Definition 3.14. Suppose X is an algebraic stack of finite type over SpecC that admits local

quotient presentations and L is a line bundle on X . We say that open substacks X+ and X−
of X arise from local VGIT with respect to L at a point x ∈ X if there exists a local quotient

presentation f : W = [SpecA/Gx]→ X around x such that f∗L is the line bundle corresponding

to the linearization of OSpecA by χL and such that there is a Cartesian diagram:

W+
L

��

� � // W

f

��

W−L?
_oo

��
X+ � � // X X−? _oo

(3.1)

The following key technical result allows to check that two given open substacks X+ and X−
arise from local VGIT with respect to a given line bundle L on X by working formally locally.

Proposition 3.15. Let X be a smooth algebraic stack of finite type over SpecC that admits

local quotient presentations. Let L be a line bundle on X . Let X+ and X− be open substacks

of X . Let x ∈ X (C) be a closed point and let χ : Gx → Gm be the character induced from

the action of Gx on the fiber of L over x. Let T1(x) be the first order deformation space of x,

let A = C[T1(x], and let Â = C[[T1(x]] be the completion of A at the origin. The affine space

T = SpecA inherits an action of Gx. Let IZ+ , IZ− ⊆ Â be the ideals defined by the reduced closed

substacks Z+ = X r X+ and Z− = X r X−. Let I+, I− ⊆ A be the VGIT ideals associated to

χ and corresponding to the Gx-invariant closed subschemes T r T+
χ and T r T−χ . If IZ+ = I+Â

and IZ− = I−Â, then X+ ↪→ X ←↩ X− arise from local VGIT with respect to L at x.

Proof. Let f : (W = [W/Gx], w) → (X , x) be a local quotient presentation around x with

W = SpecB. By applying Lemma 3.10 to the action of Gx on W , we may assume that after

shrinking W there is an induced Gx-invariant étale morphism h : W → T = SpecA (where

A = C[T1(x]) such that h−1(T+
χ ) = W+

χ and h−1(T−χ ) = W−χ . This provides a diagram

Spf Â // W = [SpecB/Gx]

f

��

h

((
X [SpecA/Gx]

In particular, I+B and I−B are the VGIT ideals in B corresponding to (+)/(−) VGIT chambers.

Since I+Â = IZ+ and I−Â = IZ− , it follows that the ideals defining Z+,Z− and WrW+
χ ,Wr

W−χ must agree in a Zariski-open neighborhood U ⊆ SpecB of w. By shrinking further, we may

assume that U is an affine scheme such that π−1(π(U)) = U where π : SpecB → SpecBGx and

that the pullback of L to U is trivial. If we set U = [U/Gx], then the composition U ↪→W → X
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is a local quotient presentation. By applying Lemma 3.9, we obtain U+ = W+ ∩ U and U− =

W− ∩ U so that in U the ideals defining Z+,Z− and U r U+,U r U− agree. Moreover, the

pullback of L to U is clearly identified with the linearization of OU by χ. Therefore, U → X has

the desired properties. �

We now explain how Proposition 3.15 is used in our situation. On the stack Mg,n(α), there

is a natural line bundle to use in conjunction with the VGIT formalism, namely the line bundle

δ − ψ. Since this line bundle is defined over Mg,n(α) for each α, there is an induced character

χδ−ψ : Aut(C, {pi}ni=1)→ Gm for any α-stable curve (C, {pi}ni=1).

Definition 3.16 (Ideals I+, I− and IZ+ , IZ−). If (C, {pi}ni=1) is an αc-closed curve, we set

A = C[T1(C, {pi}ni=1] and D̂ef(C, {pi}ni=1) := Spf Â = Spf C[[T1(C, {pi}ni=1]]. The affine space

T = SpecA inherits an action of Aut(C, {pi}ni=1), and we define I+ and I− to be the VGIT

ideals in A associated to the character χδ−ψ (see Definition 3.1). We also define IZ+ , IZ− ⊆ Â

to be the ideals defined by the reduced closed substacks Z+ := Mg,n(αc) rMg,n(αc + ε) and

Z− :=Mg,n(αc) rMg,n(αc − ε).

The main result of this section simply says that the VGIT chambers associated to δ−ψ locally

cut out the inclusions Mg,n(αc+ε) ↪→Mg,n(αc)←↩Mg,n(αc−ε).

Theorem 3.17. Let αc be a critical value. Then the open substacks

Mg,n(αc + ε) ↪→Mg,n(αc)←↩Mg,n(αc − ε)

arise from local VGIT with respect to δ − ψ at every closed point (C, {pi}ni=1) ∈Mg,n(αc).

The proof of Theorem 3.17 occupies the remainder of Section 3. As discussed at the beginning

of this section, we supply details only for the case of αc = 2/3, leaving the cases αc = 9/11, 7/10

to the reader. The outline of the proof, keeping the notation of Definition 3.16, is as follows.

In Section 3.3, we construct, for any αc-closed curve (C, {pi}ni=1), coordinates in Â and describe

the ideals IZ+ and IZ− . In Section 3.4, we use this coordinate description to compute the VGIT

ideals I+ and I−. In Proposition 3.26, we prove that IZ+ = I+Â and IZ− = I−Â, so that

Theorem 3.17 follows from Proposition 3.15.

3.3. Deformation theory of αc-closed curves. In this subsection, we let T1(C, {pi}ni=1)

denote the first order deformation space of (C, {pi}ni=1) and T1(ÔC,ξ) the first order deformation

space of a singularity ξ ∈ C. Finally, we let Aut(C, {pi}ni=1)◦ denote the connected component

of the identity of the automorphism group of (C, {pi}ni=1). We sometimes write T1(C) (resp.,

Aut(C)◦) for T1(C, {pi}ni=1) (resp., Aut(C, {pi}ni=1)◦) if no confusion is likely.

Our goal in this section is to describe coordinates on the formal deformation space of an αc-

closed curve (C, {pi}ni=1) in which the ideals IZ+ and IZ− can be described explicitly, and which

simultaneously diagonalize the natural action of Aut(C, {pi}ni=1)◦. We begin by describing the

action of Aut(E) on T1(E) for a single αc-atom E (Lemma 3.18) and a single rosary of length

3 (Lemma 3.19). Then we describe the action of Aut(C, {pi}ni=1) on T1(C, {pi}ni=1) for each

combinatorial type of an αc-closed curve (C, {pi}ni=1) (Proposition 3.20). Finally, we pass from

coordinates on the first order deformation space to coordinates on the formal deformation space

D̂ef(C, {pi}ni=1) (Proposition 3.23).
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Suppose (E, q) is a 2
3 -atom (see Definition 2.20) with the singular point ξ ∈ E. By (2.2),

we may fix the isomorphisms Aut(E) ' Gm = SpecC[t, t−1], ÔE,ξ ' C[[x, y]]/(y2 − x5), and

ÔE,q ' C[[n]], so that the action of Aut(E) is given as follows:

x 7→ t−2x, y 7→ t−5y, n 7→ tn.(3.2)

We have an exact sequence of Aut(E)-representations

0→ Cr1(E)
α−−→ T1(E)

β−−→ T1(ÔE,ξ)→ 0,

where Cr1(E) denotes the space of first order deformations that induce trivial deformations of

ÔE,ξ. In fact, since the pointed normalization of E has no non-trivial deformations, we may

identify Cr1(E) with the space of crimping deformations as defined in [vdW10, Section 1.7],

i.e., deformations that fix the pointed normalization and the analytic isomorphism type of the

singularity ξ.

Lemma 3.18. We have T1(E) ' Cr1(E)⊕T1(ÔE,ξ) and there are coordinates c on Cr1(E) and

s0, s1, s2, s3 on T1(ÔE,ξ) with weights 1 and −10,−8,−6,−4, respectively.

Proof. By the deformation theory of hypersurface singularities, we have T1(ÔE,ξ) ' A4 =

SpecC[s0, s1, s2, s3] with the universal first order deformation given by

SpecC[x, y, ε]/(y2 − x5 − s3εx
3 − s2εx

2 − s1εx− s0ε, ε
2).

Since the universal first order deformation is equivariant under the Gm-action given by x 7→
t−2x, y 7→ t−5y, we conclude that Gm acts by sk 7→ t2k−10sk.

Let s be the uniformizer at the preimage of ξ on the normalization of E. From [vdW10, Exam-

ple 1.78], we have Cr1(E) ' A1 = SpecC[c] with the universal first order crimping deformation

given by

SpecC[s+ cεs2)2, (s+ cεs2)5, ε]/(ε2).

Since s 7→ t−1s under the Gm-action on the normalization of E, we conclude that Gm acts by

c 7→ tc. �

Now let (R, r1, r2) be a rosary of length 3 (see Definition 2.26). Denote the tacnodes of R by

τ1 and τ2, so that τi lies on the same irreducible component of R as ri. We fix an isomorphism

Aut(R, r1, r2) ' Gm = SpecC[t, t−1] such that Gm acts on ÔR,τi = C[[xi, yi]]/(y
2
i − x4

i ) via

x1 7→ t−1x1, y1 7→ t−2y1 and x2 7→ tx2, y2 7→ t2y2, and acts on ÔR,ri = C[[ni]] via n1 7→ tn1 and

n2 7→ t−1n2.

Lemma 3.19. We have T1(R, r1, r2) = T1(ÔR,τ1) ⊕ T1(ÔR,τ2) and there are coordinates on

T1(ÔR,τ1) (resp., T1(ÔR,τ2)) with weights −2,−3,−4 (resp., 2, 3, 4).

Proof. This follows from the fact that the universal first order deformation of a tacnode is

SpecC[x, y, ε]/(y2 − x4 − s′2εx2 − s′1εx− s′0ε, ε2),

and the fact that R has no non-trivial crimping deformations. �

The above two lemmas immediately imply a description for the action of Aut(C, {pi}ni=1)◦ on

T1(C, {pi}ni=1) for any αc-closed curve when αc = 2/3.
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Proposition 3.20 (Diagonalized Coordinates on T1(C, {pi}ni=1)). Depending on the combina-

torial type of an 2
3 -closed curve (C, {pi}ni=1) from Definition 2.31, the following statements hold:

Type A: There exist decompositions

Aut(C, {pi}ni=1)◦ = Aut(K ′)◦ ×
r∏
i=1

Aut(Li) = Aut(K ′)◦ ×
r∏
i=1

`i−1∏
j=1

Aut(Ri,j)×Aut(Ei)


T1(C, {pi}ni=1) = T1(K ′)⊕

r⊕
i=1

T1(Li)⊕
r⊕
i=1

T1(ÔC,qi,0)

= T1(K ′)⊕
r⊕
i=1

`i−1⊕
j=1

T1(Ri,j)⊕
`i−1⊕
j=0

T1(ÔC,qi,j )⊕ T1(Ei)


where Aut(K ′)◦ acts trivially on

⊕r
i=1 T1(Li)⊕

⊕r
i=1 T1(ÔC,qi,0) and

∏r
i=1 Aut(Li) acts trivially

on T1(K ′). For 1 ≤ i ≤ r, 1 ≤ j ≤ `i− 1, let ti,j denote the coordinate on Aut(Ri,j) ' Gm, and

let ti = ti,`i denote the coordinate on Aut(Ei) ' Gm. Then there exist coordinates

“rosary” ri,j = (ri,j,k)
2
k=0, r′i,j = (r′i,j,k)

2
k=0 on T1(Ri,j) for 1 ≤ i ≤ r, 1 ≤ j ≤ `i

“singularity” si = (si,k)
3
k=0 on T1(ÔC,ξi) for 1 ≤ i ≤ r

“crimping” ci on Cr1(Ei) for 1 ≤ i ≤ r
“node” ni,j on T1(ÔC,qi,j ) for 1 ≤ i ≤ r, 0 ≤ j < `i

such that the action of
∏r
i=1 Aut(Li) on T1(C) is given by

ri,j,k 7→ tk−4
i,j ri,j,k r′i,j,k 7→ t4−ki,j r′i,j,k si,k 7→ t2k−10

i,`i
si,k

ci 7→ ti,`ici ni,0 7→ ti,1ni,0 ni,j 7→ t−1
i,j ti,j+1ni,j (0 < j < `i).

Note that we need not specify the action of Aut(K ′)◦ on T1(C) as this will be irrelevant for the

calculation of the VGIT chambers associated to (C, {pi}ni=1).

Type B: There exist decompositions

Aut(C, {pi}ni=1)◦ =
`−1∏
i=1

Aut(Ri)×Aut(E`)

T1(C, {pi}ni=1) =

`−1⊕
i=1

[
T1(Ri)⊕ T1(ÔC,qi)

]
⊕ T1(E`)

For 1 ≤ i ≤ ` − 1, let ti be the coordinate on Aut(Ri) ' Gm, and let t` be the coordinate on

Aut(E`) ' Gm. Then there are coordinates

“rosary” ri = (ri,k)
2
k=0, r′i = (r′i,k)

2
k=0 on T1(Ri) for 1 ≤ i ≤ `− 1

“singularity” s = (sk)
3
k=0 on T1(ÔC,ξ)

“crimping” c on Cr1(E`)

“node” ni on T1(ÔC,qi) for 1 ≤ i ≤ `− 1

such that the action of Aut(C)◦ on T1(C) is given by

ri,k 7→ tk−4
i ri,k r′i,k 7→ t4−ki r′i,k sk 7→ t2k−10

` sk
c 7→ t`c ni 7→ t−1

i ti+1ni (1 ≤ i ≤ `− 1).
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Type C: There exist decompositions

Aut(C)◦ = Aut(E0)×Aut(E`)×
`−1∏
i=1

Aut(Ri)

T1(C) = T1(E0)⊕ T1(E`)⊕
`−1⊕
i=1

T1(Ri)⊕
`−1⊕
i=0

T1(ÔC,qi)

Let t0, t` be coordinates on Aut(E0) ' Gm and Aut(E`) ' Gm, and for 1 ≤ i ≤ ` − 1, let ti be

the coordinate on Aut(Ri) ' Gm. Then there are coordinates

“rosary” ri = (ri,k)
2
k=0, r′i = (r′i,k)

2
k=0 on T1(Ri) for 1 ≤ i ≤ `− 1

“singularity” si = (si,k)
3
k=0 on T1(ÔC,ξi) for i = 0, `

“crimping” ci on Cr1(Ei) for i = 0, `

“node” ni on T1(ÔC,qi) for 0 ≤ i ≤ `− 1

such that the action of Aut(C)◦ on T1(C) is given by

ri,k 7→ tk−4
i ri,k r′i,k 7→ t4−ki r′i,k si,k 7→ t2k−10

i si,k
ci 7→ tici n0 7→ t0t1n0 ni 7→ t−1

i ti+1ni (0 < i < `) n` 7→ t`−1t`n0

Proof. This follows easily from Lemmas 3.18 and 3.19. �

It is evident that the coordinates of Proposition 3.20 on T1(C, {pi}ni=1) diagonalize the nat-

ural action of Aut(C, {pi}ni=1)◦. However, we need slightly more. We need coordinates that

diagonalize the natural action of Aut(C, {pi}ni=1)◦ and that cut out the natural geometrically-

defined loci on D̂ef(C, {pi}ni=1) = Spf C[[T1(C, {pi}ni=1]]. Namely, for αc = 2/3, the {si} co-

ordinates should cut out the locus of formal deformations preserving the singularities and the

{ni,j , r′i,j+1, r
′
i,j+2, . . . , r

′
i,`i−1, ci} coordinates should cut out the locus of formal deformations

preserving a Weierstrass chain. This is almost a purely formal statement (see Lemma 3.22

below); however there is one non-trivial geometric input. We must show that the crimping

coordinate which defines the locus of ramphoid cuspidal deformations with trivial crimping can

be extended to a global coordinate which vanishes on the locus of Weierstrass tails. This is

essentially a first order statement which we prove below in Lemma 3.21.

The 2
3 -atom E defines a point in Z+ ∩ Z− ⊆ M2,1(2/3) (we keep the notation of Z+,Z−

from Definition 3.16). If we denote this point by 0, we have natural inclusions of Aut(E)-

representations

i : T1
Z+,0 ↪→ T1

M2,1(2/3),0
= T1(E) and j : T1

Z−,0 ↪→ T1
M2,1(2/3),0

= T1(E).

On the other hand, recall that we have the exact sequence of Aut(E)-representations

(3.3) 0→ Cr1(E)
α−−→ T1(E)

β−−→ T1(ÔE,ξ)→ 0

where T1(ÔE,ξ) denotes the space of first order deformations of the singularity ξ ∈ E, and Cr1(E)

denotes the space of first-order crimping deformations. The key point is that the tangent spaces

of the global stacks Z− and Z+ are naturally identified as deformations of the singularity and

the crimping respectively.
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Lemma 3.21. With notation as above, there exist isomorphisms of Aut(E)-representations

T1
Z−,0 ' T1(ÔE,ξ) and T1

Z+,0 ' Cr1(E)

inducing a splitting of (3.3) with j = α and i = β−1.

Proof. It suffices to show that the composition β ◦ j : T1
Z−,0 → T1(ÔE,ξ) is an isomorphism,

and that the composition β ◦ i : T1
Z+,0 → T1(ÔE,ξ) is zero.

As we have already observed in the proof of Lemma 2.23, every Weierstrass tail can be written

as a double cover of P1 defined by an equation y2 = x5 + a3x
3 + a2x

2 + a1x + a0, and can be

isotrivially specialized to the 2
3 -atom y2 = x5. It follows that Z− ' [A4/Gm] where the universal

family is given by taking the quotient of (an appropriate compactification of)

SpecC[x, y, a0, a1, a2, a3]/(y2 − x5 − a3x
3 − a2x

2 − a1x− a0)→ SpecC[a3, a2, a1, a0]

by Aut(E) ' Gm = SpecC[t, t−1] acting by x → t−2x, y 7→ t−5x, and ak 7→ t2k−10ak. In

particular, Gm acts on T1(Z−) with weights −4, −6, −8, −10. It is also clear from the above

global description that the first order deformations of E in Z− are in bijection with the first

order deformations of ÔE,ξ. We conclude that β ◦ j is an isomorphism.

By definition, every first order deformation of E in Z+ preserves the ramphoid cusp. It follows

that the composition β ◦ i : T1
Z+,0 → T1(ÔE,ξ) is zero. �

Lemma 3.22. Let V be a finite-dimensional representation of a torus G, let X = Spf C[[V ]],

and let m ⊆ C[[V ]] be the maximal ideal. Suppose we are a given a collection of G-invariant

formal smooth closed subschemes Zi := Spf C[[V ]]/Ii, (i = 1, . . . , r) which intersect transversely

at 0, and a basis x1, . . . , xn for V such that:

(1) x1, . . . , xn diagonalize the action of G.

(2) Ii/mIi is spanned by a subset of x1, . . . , xn.

Then there exist coordinates X ' Spf C[[x′1, . . . , x
′
k]] such that

(1) x′1, . . . , x
′
n diagonalize the action of G.

(2) x′1, . . . , x
′
n reduce modulo m to x1, . . . , xn.

(3) Ii is generated by a subset of x′1, . . . , x
′
n.

Proof. Let xi,1, . . . , xi,di be a diagonal basis for Ii/mIi as a G-representation. Consider the

surjection Ii → Ii/mIi and choose an equivariant section, i.e., choose x′i,1, . . . , x
′
i,di

such that

each spans a one-dimensional sub-representation of G. By Nakayama’s Lemma, these elements

generate Ii. Repeating this procedure for each Zi, we obtain x′i,j for i = 1, . . . , r and j = 1, . . . , di.

Since the Zi’s intersect transversely, these coordinates induce linearly independent elements of

V . Thus they may be completed to a diagonal basis, and this gives the necessary coordinate

change. �

Proposition 3.23 (Explicit Description of IZ+ , IZ−). Let (C, {pi}ni=1) be an αc-closed curve.

There exist coordinates ri,j, r′i,j, si, ci, and ni,j on D̂ef(C, {pi}ni=1) such that the action of

Aut(C, {pi}ni=1)◦ on D̂ef(C, {pi}ni=1) = Spf Â is given as in Proposition 3.20, and such that the

ideals IZ+, IZ− are given as follows:



SECOND FLIP IN THE HASSETT-KEEL PROGRAM: A LOCAL DESCRIPTION 33

• Type A: IZ+ =
⋂r
i=1(si) and

IZ− =
r⋂
i=1

`i−1⋂
j=0

(ni,j , r
′
i,j+1, r

′
i,j+2, . . . , r

′
i,`i−1, ci).

• Type B: IZ+ = (s) and

IZ− =
`−1⋂
i=1

(ni, r
′
i+1, r

′
i+2, . . . , r

′
`−1, c) ∩ (r′1, r

′
2, . . . , r

′
`−1, c).

• Type C: IZ+ = (s0) ∩ (s`) and

IZ− =

`−1⋂
i=0

(ni, ri, ri−1, . . . , r1, c0) ∩
`−1⋂
i=0

(ni, r
′
i+1, r

′
i+2, . . . , r

′
`−1, c`).

Proof. We prove the statement when (C, {pi}ni=1) is a 2
3 -closed curve of combinatorial type A;

the other cases are similar and left to the reader. Let D̂ef(C, {pi}ni=1) = Spf Â→Mg,n(2/3) be

a miniversal deformation space of (C, {pi}ni=1). For i = 1, . . . , r, we define

• Z+
i = Spf Â/IZ+

i
is the locus of deformations preserving the ith ramphoid cusp ξi.

• Z−i = Spf Â/IZ−i
is the locus of deformations preserving the ith Weierstrass tail.

Since Z+
i (resp., Z−i ) are smooth, G-invariant, formal closed subschemes of Spf Â, the conormal

space of Z+
i (resp., Z−i ) is canonically identified with IZ+

i
/m

Â
IZ+

i
(resp., IZ−i

/m
Â
IZ−i

). Thus,

in the notation of Proposition 3.20, we have IZ+
i
/m

Â
IZ+

i
' T1(ÔEi,ξi)∨. Moreover, if `i = 1, we

have

IZ−i
/m

Â
IZ−i
' Cr1(Ei)

∨ ⊕ T1(ÔEi,qi)∨

using Lemma 3.21 to identify Cr1(Ei)
∨ as the conormal space of the locus of deformations of Ei

for which the attaching point remains Weierstrass.

If `i > 1, we define

• Ti,j = Spf Â/ITi,j as the locus of deformations preserving the tacnode τi,j,2, for j =

1, . . . , `i − 2.

• Wi = Spf Â/IWi as the closure of the locus of deformations preserving the tacnode

τi,`i−1,2 such that the tacnodally attached genus 2 curve is attached at a Weierstrass

point.

• Ni,j = Spf Â/INi,j as the locus of deformations preserving the node qi,j , for j = 0, . . . , `i−
1.

We observe that for each i with `i > 1, Wi is a smooth, G-invariant formal subscheme, and there

is an identification

IWi/mÂ
IWi ' Cr1(Ei)

∨ ⊕ T1(ÔC,τi,`i−1,2
)∨.

If we choose coordinates ci ∈ Cr1(Ei)
∨ and si,0, si,1, si,2, si,3 ∈ T1(ÔC,τi,`i−1,2

)∨ cutting out Wi

and a coordinate ni,`i−1 cutting out Ni,`i−1, then it is easy to check that Z−i is necessarily cut

out by ci and ni,`i−1.
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Formally locally around (C, {pi}ni=1), Z+ and Z− decompose as

Z+ ×Mg,n(2/3) Spf Â = Z+
1 ∪ · · · ∪ Z

+
r ,

Z− ×Mg,n(2/3) Spf Â =
r⋃
i=1

(
Z−i ∪

`i−2⋃
j=0

(
Wi ∩

`i−2⋂
k=j+1

Ti,k ∩Ni,j

))
For each i = 1, . . . , r, we consider the cotangent space of Z+

i and either the cotangent space

of Z−i if `i = 1 or the set of cotangents spaces of Ti,j ,Wi, Ni,j if `i > 1. Since this collection

of subspaces of T1(C, {pi}ni=1), as i ranges from 1 to r, is linearly independent, we may apply

Lemma 3.22 to this collection of formal closed subschemes to obtain coordinates with the required

properties. �

3.4. Local VGIT chambers for an αc-closed curve. In this section, we explicitly com-

pute the VGIT ideals I+, I− ⊆ A (Definition 3.16) for any αc-closed curve. The main result

(Proposition 3.26) states that the VGIT ideals agree formally locally with the ideals IZ+ , IZ− .

By Proposition 3.15, this suffices to establish Theorem 3.17. In order to carry out the compu-

tation of I+ and I−, we must do two things: First, we must explicitly identify the character

χδ−ψ : Aut(C, {pi}ni=1) → Gm for any αc-closed curve. Second, we must compute the ideals of

positive and negative semi-invariants with respect to this character.

Definition 3.24. Let E1, . . . , Er be the αc-atoms of (C, {pi}ni=1), and let ti ∈ Aut(Ei) be the

coordinate specified in Equation (2.2). Let

χ? : Aut(C, {pi}ni=1)◦ → Gm = SpecC[t, t−1]

be the character defined by t 7→ t1t2 · · · tr. Note that χ? is trivial on automorphisms fixing the

αc-atoms.

Proposition 3.25. Let αc be a critical value and let (C, {pi}ni=1) be an αc-closed curve. Then

there exists a positive integer N such that χδ−ψ|Aut(C,{pi}ni=1)◦ = χN? for every αc-closed curve

(C, {pi}ni=1). In particular, I±χδ−ψ = I±χ?.

Proof. We prove the case when αc = 2/3 for an αc-closed curve (C, {pi}ni=1) of Type A. Let

C = K ′ ∪ L1 ∪ · · · ∪ Lr be the decomposition of C as in Definition 2.31, and suppose that

the rank of Aut(K ′) is d. By Remark 2.28, there exist length 3 rosaries R′1, . . . , R
′
d such that

Aut(K ′)◦ '
∏d
i=1 Aut(R′i). Thus, we have

Aut(C)◦ = Aut(K ′)◦ ×
r∏
i=1

Aut(Li) =

d∏
i=1

Aut(R′i)×
r∏
i=1

`i−1∏
j=1

Aut(Ri,j)×Aut(Ei)

 .
Given any one-parameter subgroup ρ : Gm → Aut(C), we have that 〈χδ−ψ, ρ〉 is the character

of the induced action of Gm on the fiber of the line bundle δ − ψ over the point [C]. The paper

[AFS14] explains how to systematically compute such characters. In particular, let ρ′i : Gm →
Aut(C) (resp., ρi,j , ϕi) be the one-parameter subgroup corresponding to Aut(R′i) ⊂ Aut(C)

(resp., Aut(Ri,j),Aut(Ei) ⊂ Aut(C)). Then by [AFS14, Sections 3.1.2–3.1.3], we have

〈χδ−ψ, ρ′i〉 = 0, 〈χδ−ψ, ρi,j〉 = 0, 〈χδ−ψ, ϕi〉 = 39.
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On the other hand, the definition of χ? obviously implies

〈χ?, ρ′i〉 = 0, 〈χ?, ρi,j〉 = 0, 〈χ?, ϕi〉 = 1.

It follows that χδ−ψ = χ39
? as desired. �

Proposition 3.25 and Corollary 3.8 imply that we can compute the VGIT ideals I− and I+

as the ideals of semi-invariants associated to χ?. In the following proposition, we compute these

explicitly, and show that they are identical to the ideals IZ+ and IZ− , as described in Proposition

3.23.

Proposition 3.26 (Description of VGIT ideals). Let (C, {pi}ni=1) be an αc-closed curve for the

critical value αc ∈ {2/3, 7/10, 9/11}. Then I+Â = IZ+ and I−Â = IZ−.

We first handle the special case when C has one nodally attached 2
3 -link of length `, i.e., C is

a 2
3 -closed curve of combinatorial type A with r = 1. Using Proposition 3.20, we have

Aut(C)◦ = Aut(K ′)◦ ×Aut(L1)◦ T1(C) = T1(K ′)⊕ T1(L1)⊕ T1(ÔC,q0)

with coordinates t1, . . . , t` on Aut(L1), coordinates rj = (rj,0, rj,1, rj,2), r′j = (r′j,0, r
′
j,1, r

′
j,2), nj

(j = 1, . . . , `− 1), s = (s0, s1, s2, s3), c on T1(L1), and a coordinate n0 on T1(ÔC,q0), so that the

action of Aut(L1)◦ on T1(L1)⊕ T1(ÔC,q0) is given by

rj,k 7→ tk−4
j rj,k, r′j,k 7→ t4−kj r′j,k, sk 7→ t2k−10

` sk
c 7→ t`c n0 7→ t1n0, nj 7→ t−1

j tj+1nj (0 < j < `).

The character χ? is given by

Aut(C)◦ ' G`
m → Gm, (t1, . . . , t`) 7→ t`.

Lemma 3.27. With the above notation, the vanishing loci of I+ and I− are

V (I+) = V (s) V (I−) =

`−1⋃
j=0

V (nj , r
′
j+1, r

′
j+2, . . . , r

′
`−1, c)

Remark. For instance, if ` = 2, V (I−) = V (n1, c) ∪ V (n0, r
′
1, c).

Proof. The first equality is obvious. We use the Hilbert-Mumford criterion to verify the second.

Suppose x ∈ V (nj , r
′
j+1, . . . , r

′
`−1, c) for some j = 0, . . . , `− 1. If we set

λ =
(

0, . . . , 0︸ ︷︷ ︸
j

,−1,−1, . . . ,−1︸ ︷︷ ︸
`−j

)
then 〈χ?, λ〉 = −1 < 0 and limt→0 λ(t) · x exists. Therefore, x ∈ V (I−). Conversely, suppose

x ∈ V (I−) and λ = (λi) : Gm → G`
m is a one-parameter subgroup with 〈χ?, λ〉 = λ` < 0

such that limt→0 λ(t) · x exists. Clearly, we may assume that λ` = −1. First, it is clear that

c(x) = 0. If n`−1(x) = 0, then x ∈ V (n`−1, c). Otherwise, as the limit exists, λ`−1 ≤ −1 so that

r′`−1(x) = 0. If n`−2(x) = 0, then x ∈ V (n`−2, r
′
`−1, c). Continuing by induction, we see that

there must be some j = 0, . . . , `− 1 with x ∈ V (nj , r
′
j+1, r

′
j+2, . . . , r

′
`−1, c) which establishes the

lemma. �
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Proof of Proposition 3.26 for αc = 2/3. Let (C, {pi}ni=1) be an αc-closed curve and consider the

action of Aut(C, {pi}ni=1)◦ on T1(C, {pi}ni=1) described in Proposition 3.20. We split the proof

into the types of αc-closed curves according to Definition 2.31.

•αc = 2/3 of Type A. By Corollary 3.6, it is enough to consider the case when r = 1 which is

the example worked out in Lemma 3.27.

•αc = 2/3 of Type B. The action here is the same action as in Lemma 3.27 restricted to the

closed subscheme V (n0) so this case follows from Corollary 3.7 and Lemma 3.27.

•αc = 2/3 of Type C. This case can be handled by an argument similar to the proof of Lemma

3.27.

�

Proof of Theorem 3.17. Proposition 3.26 implies that IZ+ = I+Â and IZ− = I−Â. Using

Corollary 3.12, we may now apply Proposition 3.15 to conclude the statement of the theorem. �
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