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Abstract. We prove a general criterion for an algebraic stack to admit a good moduli space.

This result may be considered as a generalization of the Keel-Mori theorem, which guarantees

the existence of a coarse moduli space for a separated Deligne-Mumford stack. We apply this

result to prove that the moduli stacks Mg,n(α) parameterizing α-stable curves introduced in

[AFSv14] admit good moduli spaces.
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1. Introduction

This is the second paper in a trilogy in which we construct the second flip in the log minimal

model program for Mg,n. In this paper, we prove that the moduli stacksMg,n(α) parameterizing

α-stable curves introduced in [AFSv14, §2] admit good moduli spaces. Namely, we prove:

Theorem 1.1. For every α ∈ (2/3−ε, 1], Mg,n(α) admits a good moduli space Mg,n(α) which

is a proper algebraic space over C. Furthermore, for each critical value αc ∈ {2/3, 7/10, 9/11},
there exists a diagram

Mg,n(αc+ε)

��

� � //Mg,n(αc)

��

Mg,n(αc−ε)? _oo

��
Mg,n(αc+ε) // Mg,n(αc) Mg,n(αc−ε)oo

where Mg,n(αc)→ Mg,n(αc), Mg,n(αc+ε)→ Mg,n(αc+ε) and Mg,n(αc−ε)→ Mg,n(αc−ε) are

good moduli spaces, and where Mg,n(αc+ε)→Mg,n(αc) and Mg,n(αc−ε)→Mg,n(αc) are proper

morphisms of algebraic spaces.

The goal of the final paper in the trilogy [AFS15] is to establish an isomorphism between

Mg,n(α) and the projective variety

(1.1) Mg,n(α) := Proj
⊕
m≥0

H0(Mg,n, bm(KMg,n
+ αδ + (1− α)ψ)c),

1
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which thereby proves that the good moduli spaces of Mg,n(α) are indeed the log canonical

models defined in (1.1).

In the case where α ∈ (2/3, 7/10] and n = 0, the spaces Mg,n(α) has been constructed using

Geometric Invariant Theory (GIT) by Hassett and Hyeon in [HH09, HH13]. There is no known

GIT construction of the moduli spaces corresponding to α ≤ 2/3. Thus, this paper gives the

first intrinsic construction of a moduli space associated to an algebraic stack parameterizing

objects with infinite automorphism groups.

In order to prove Theorem 1.1, we establish three general existence results for good moduli

spaces. These existence results make essential use of the notions of local quotient presentation

and VGIT chambers of a local quotient presentation, introduced in Definition 2.1 and Definition

2.4, respectively. Our first existence result gives conditions under which one may use a local

quotient presentation to construct a good moduli space.

Theorem 1.2. Let X be an algebraic stack of finite type over an algebraically closed field k.

Suppose that:

(1) for every closed point x ∈ X , there exists a local quotient presentation f : W → X around

x such that:

(a) the morphism f is stabilizer preserving at closed points of W, and

(b) the morphism f sends closed points to closed points; and

(2) for any point x ∈ X (k), the closed substack {x} admits a good moduli space.

Then X admits a good moduli space.

As we explain below, this result may be considered as an analog of the Keel-Mori theorem

[KM97] for algebraic stacks, but in practice the hypotheses of Theorem 1.2 are harder to verify

than those of the Keel-Mori theorem. Nevertheless, we believe that the above theorem should

be applicable to many additional moduli problems. In fact, it has come to our attention that it

has already been applied to construct a good moduli space of Kähler-Einstein Fano varieties in

[LWX14] and [Oda14].

Our second existence result, Theorem 1.3, gives one situation in which the hypotheses of

Theorem 1.2 are satisfied. It says that if X is an algebraic stack and X+ ↪→ X ←↩ X− is a pair

of open immersions locally cut out by VGIT chambers of a local quotient presentation, then X
admits a good moduli space if X+, X r X+, and X r X− do.

Theorem 1.3. Let X be an algebraic stack of finite type over an algebraically closed field k,

and let L be a line bundle on X . Let X+,X− ⊂ X be open substacks, and let Z+ = X r X+

and Z− = X r X− be their reduced complements. Suppose that

(1) the algebraic stacks X+, Z+, Z− admit good moduli spaces; and

(2) for all closed points x ∈ Z+ ∩ Z−, there exists a local quotient presentation f : W → X
around x and a Cartesian diagram

W+
L

��

� � // W

��

W−L?
_oo

��
X+ � � // X X−? _oo

(1.2)

where W+
L ,W

−
L are the VGIT chambers of W with respect to L.
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Then there exist good moduli spaces X → X and X− → X− such that X+ → X and X− → X

are proper and surjective. In particular, if X+ is proper over k, then X and X− are also proper

over k.

The third existence result, Proposition 1.4, proves that one can check existence of a good

moduli space after passing to a finite cover by a quotient stack. Recall that an algebraic stack

X is called a global quotient stack if Z ' [Z/GLn], where Z is an algebraic space with an action

of GLn.

Proposition 1.4. Let f : X → Y be a morphism of algebraic stacks of finite type over an

algebraically closed field k of characteristic 0. Suppose that:

(1) the morphism f : X → Y is finite and surjective;

(2) there exists a good moduli space X → X with X separated; and

(3) the algebraic stack Y is a global quotient stack and admits local quotient presentations.

Then there exists a good moduli space Y → Y with Y separated. Moreover, if X is proper, so is

Y .

Both Theorem 1.3 and Proposition 1.4 are proved using Theorem 1.2.

1.1. Motivation and sketch of proof of Theorem 1.2. In order to motivate the statement of

Theorem 1.2, let us give an informal sketch of the proof. If X admits local quotient presentations,

then every closed point x ∈ X admits an étale neighborhood of the form

[SpecAx /Gx]→ X ,

where Ax is a finite type k-algebra and Gx is the stabilizer of x. The union∐
x∈X

[SpecAx /Gx]

defines an étale cover of X ; reducing to a finite subcover, we obtain an atlas f : W → X with

the following properties:

(1) f is affine and étale; and

(2) W admits a good moduli space W .

Indeed, (2) follows simply by taking invariants [SpecAx/Gx] → SpecAGxx and since f is affine,

the fiber product R := W ×X W admits a good moduli space R. We may thus consider the

following diagram:

R
p1 //
p2

//

ϕ

��

W
f //

φ
��

// X

R
q1 //
q2
// W

(1.3)

The crucial question is: Can we choose f : W → X to guarantee that the projections

q1, q2 : R ⇒ W define an étale equivalence relation? If so, then the algebraic space quotient

X = W/R gives a good moduli space for X .
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If X is a separated Deligne-Mumford stack, we can always do this. Indeed, the atlas f may be

chosen to be stabilizer preserving.1 Thus, we may take the projections R⇒W to be stabilizer

preserving and étale, and this implies that the projections R ⇒ W are étale.2 This leads to

a direct proof of the Keel-Mori theorem for separated Deligne-Mumford stacks of finite type

over Spec k (one can show directly that such stacks always admit local quotient presentations).

In general, of course, algebraic stacks need not be separated so we must find weaker conditions

which ensure that the projections q1, q2 are étale. In particular, we must identify a set of sufficient

conditions that can be directly verified for geometrically-defined stacks such as Mg,n(α).

Our result gives at least one plausible answer to this problem. To begin, note that if ω ∈ W is a

closed k-point with image w ∈W , then the formal neighborhood ÔW,w can be identified with the

Gω-invariants DGω
ω of the miniversal deformation space Dω of ω. Thus, we may ensure that qi is

étale at a k-point r ∈ R, or equivalently that the induced map ÔW,qi(r) → ÔR,r is an isomorphism,

by manually imposing the following conditions: pi(ρ) should be a closed point, where ρ ∈ R
is the unique closed point in the preimage of r ∈ R, and pi should induce an isomorphism of

stabilizer groups Gρ ' Gpi(ρ). Indeed, we then have ÔW,qi(r) = D
Gpi(ρ)
pi(ρ) ' D

Gρ
ρ = ÔR,r, where

the middle isomorphism follows from the hypothesis that pi is étale and stabilizer preserving. In

sum, we have identified two key conditions that will imply that R⇒ W is an étale equivalence

relation:

(?) The morphism f : W → X is stabilizer preserving at closed points.

(??) The projections p1, p2 : W ×X W ⇒W send closed points to closed points.

Condition (?) is precisely hypothesis (1a) of Theorem 1.2. In practice, it is difficult to directly

verify condition (??), but it turns out that it is implied by conditions (1b) and (2), which are

often easier to verify.

1.2. Roadmap. In Section 2, we recall the necessary terminology and results from [AFSv14].

We also prove some preliminary lemmas concerning strongly étale morphisms. In Section 3,

we prove Theorem 1.2, Theorem 1.3 and Proposition 1.4. Namely, in §3.1, we prove Theorem

1.2 along the lines described in §1.1. Then we prove Theorem 1.3 and Proposition 1.4 in §3.2

and §3.3, respectively, by showing that after suitable reductions, their hypotheses imply that

conditions (1a), (1b) and (2) of Theorem 1.2 are satisfied. In Section 4, we apply Theorem 1.3

to prove Theorem 1.1. Appendix A provides various examples of algebraic stacks highlighting

the necessity of conditions (1a), (1b) and (2) in Theorem 1.2.

Notation. Theorem 1.1 holds over an arbitrary algebraically closed field C of characteristic 0.

In Sections 2 and 3, we work over an algebraically closed field k of arbitrary characteristic unless

when stated otherwise. A linearly reductive group scheme over a field k is, by definition, an affine

group scheme of finite type over k such that every representation is completely reducible.

1The set of points ω ∈ W where f is not stabilizer preserving is simply the image of the complement of the

open substack IW ⊂ IX ×X W in W and therefore is closed since IX → X is proper. By removing this locus from

W, f : W → X may be chosen to be stabilizer preserving.
2To see this, note that if r ∈ R is any closed point and ρ ∈ R is its closed preimage, then ÔR,r ' DGρ

ρ , where

Dρ denotes the miniversal formal deformation space of ρ and Gρ is the stabilizer of ρ; similarly ÔW,qi(r) ' D
Gpi(ρ)

pi(ρ)
.

Now pi étale implies Dρ ' Dpi(ρ) and pi stabilizer preserving implies Gρ ' Gpi(ρ), so ÔR,r ' ÔW,qi(r), i.e. qi is

étale.
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2. Background and preliminary results

2.1. Local quotient presentations.

Definition 2.1. Let X be an algebraic stack of finite type over an algebraically closed field k,

and let x ∈ X (k) be a closed point. We say that f : W → X is a local quotient presentation

around x if:

(1) the stabilizer Gx of x is linearly reductive;

(2) there is an isomorphism W ' [SpecA/Gx], where A is a finite type k-algebra;

(3) the morphism f is étale and affine; and

(4) there exists a point w ∈ W(k) such that f(w) = x and f induces an isomorphism

Gw ' Gx.

We sometimes write f : (W, w)→ (X , x) as a local quotient presentation to indicate the chosen

preimage of x. We say that X admits local quotient presentations if there exist local quotient

presentations around all closed points x ∈ X (k).

Remark 2.2. Note that if X admits local quotient presentations, then X necessarily has affine

diagonal and every closed point necessarily has a linearly reductive stabilizer group.

For our purpose of applying Theorem 1.3 to the moduli stacks Mg,n(α), the following result

suffices to guarantee the existence of local quotient presentations.

Proposition 2.3. [AK14, §3.3] Let k be an algebraically closed field. Let X be a quotient stack

[U/G] where U is a normal and separated scheme of finite type over k and G is a smooth linear

algebraic group over k. If x ∈ X (k) is a point with linearly reductive stabilizer, then there exists

a local quotient presentation f : W → X around x.

2.2. Local VGIT chambers. Let G be a linearly reductive group acting on an affine scheme

X = SpecA by σ : G ×X → X. Let χ : G → Gm be a character. Set An := {f ∈ A | σ∗(f) =

χ∗(t)−nf}. We define the VGIT ideals with respect to χ to be:

I+
χ := (f ∈ A | f ∈ An for some n > 0),

I−χ := (f ∈ A | f ∈ An for some n < 0).

The VGIT (+)-chamber and (−)-chamber of X with respect to χ are the open subschemes

X+
χ := X \ V(I+

χ ) ↪→ X, X−χ := X \ V(I−χ ) ↪→ X.

and since the open subschemes X+
χ , X−χ are G-invariant, we also have stack-theoretic open

immersions

[X+
χ /G] ↪→ [X/G]←↩ [X−χ /G].
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We will refer to these open immersions as the VGIT (+)/(−)-chambers of [X/G] with respect to

χ.

Finally, given the data of an algebraic stack X and a line bundle L on X , we can define the

VGIT chambers of a local quotient presentation. In this situation, note that if x ∈ X (k) is any

point, then there is a natural action of the automorphism group Gx on the fiber L|BGx that

induces a character χL : Gx → Gm.

Definition 2.4 (VGIT chambers of a local quotient presentation). Let X be an algebraic stack

of finite type over an algebraically closed field k. Let L be a line bundle on X . Let x ∈ X be a

closed point. If f : W → X is a local quotient presentation around x, we define the chambers of

W with respect to L to be the VGIT (+)/(−)-chambers

W+
L ↪→W ←↩W−L

of W with respect to the character χL : Gx → Gm.

2.3. Strongly étale morphisms.

Definition 2.5. Let X and Y be algebraic stacks of finite type over an algebraically closed field

k which have affine diagonal. Let f : X → Y be a morphism of algebraic stacks. We say that

• the morphism f sends closed points to closed points if for every closed point x ∈ X , the

point f(x) ∈ Y is closed.

• the morphism f is stabilizer preserving at x ∈ X (k) if AutX (k)(x)→ AutY(k)(f(x)) is an

isomorphism.

• for a closed point x ∈ X , the morphism f is strongly étale at x if f is étale at x, f is

stabilizer preserving at x, and f(x) ∈ Y is closed.

• the morphism f is strongly étale if f is strongly étale at all closed points of X .

Definition 2.6. Let φ : X → X be a good moduli space. We say that an open substack U ⊂ X
is saturated if φ−1(φ(U)) = U .

The following proposition is simply a stack-theoretic formulation of Luna’s well-known re-

sults in invariant theory [Lun73, Chapitre II] often referred to as Luna’s fundamental lemma. It

justifies the terminology strongly étale by showing that strongly étale morphisms induce étale

morphisms of good moduli spaces. It also shows that for a morphism of algebraic stacks admit-

ting good moduli spaces, strongly étale is an open condition.

Proposition 2.7. Let W and X be algebraic stacks of finite type over an algebraically closed

field k which have affine diagonal. Consider a commutative diagram

W
f //

ϕ

��

X
φ
��

W
g // X

(2.1)

where f is representable and separated, and both ϕ and φ are good moduli spaces. Then

(1) if f is strongly étale at w ∈ W, then g is étale at ϕ(w);

(2) if f is strongly étale, then g is étale and Diagram (2.1) is Cartesian; and

(3) there exists a saturated open substack U ⊂ W such that:
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(a) the morphism f |U : U → X is strongly étale and f(U) ⊂ X is saturated, and

(b) if w ∈ W is a closed point such that f is strongly étale at w, then w ∈ U .

Proof. [Alp13, Theorem 5.1] gives part (1) and that g is étale in (2). The hypotheses in (2) imply

that the induced morphism Ψ: W →W ×XX is representable, separated, quasi-finite and sends

closed points to closed points. [Alp13, Proposition 6.4] implies that Ψ is finite. Moreover, since

f and g are étale, so is Ψ. But since W and W ×X X both have W as a good moduli space,

it follows that a closed point in W ×X X has a unique preimage under Ψ. Therefore, Ψ is

an isomorphism and the diagram is Cartesian. Statement (3) follows from [Alp10, Theorem

6.10]. �

Lemma 2.8. Let X be an algebraic stack of finite type over an algebraically closed field k which

has affine diagonal, and let φ : X → X be a good moduli space. Let x ∈ X be a closed point and

U ⊂ X be an open substack containing x. Then there exists a saturated open substack U1 ⊂ U
containing x. Moreover, if X ' [SpecA/G] with G linearly reductive, then U1 can be chosen to

be of the form [SpecB/G] for a G-invariant open affine subscheme SpecB ⊂ SpecA.

Proof. The substacks {x} and X \ U are closed and disjoint. By [Alp13, Theorem 4.16], φ({x})
and Z := φ(X \ U) are closed and disjoint. For the first statement, take U1 = φ−1(X \ Z). For

the second statement, take U1 = φ−1(U1) for an affine open subscheme U1 ⊂ X \ Z. �

Lemma 2.9. Let X and Y be algebraic stacks of finite type over an algebraically closed field

k which have affine diagonal. Let f : X → Y be a strongly étale morphism. Suppose that for

points x ∈ X (k) and y ∈ Y(k), the closed substacks {x} ⊂ X and {y} ⊂ Y admit good moduli

spaces. Then for any finite type morphism g : Y ′ → Y with affine diagonal, the base change

f ′ : X ×Y Y ′ → Y ′ is strongly étale.

Proof. Clearly, the morphism f ′ is étale. Let x′ ∈ X ×Y Y ′ be a closed point. To check that f ′

is stabilizer preserving at x′ and f ′(x′) ∈ Y ′ is closed, we may replace Y with {g(f ′(x′))} and X
with {g′(x′)} where g′ : X ×Y Y ′ → X . Since f is strongly étale, Proposition 2.7(2) implies that

f is in fact an isomorphism, and the desired properties of f ′ are immediate. �

3. General existence results

In this section, we prove Theorem 1.2, Theorem 1.3 and Proposition 1.4.

3.1. Existence via local quotient presentations. We now prove Theorem 1.2.

Proposition 3.1. Let X be an algebraic stack of finite type over an algebraically closed field k

which has affine diagonal. Suppose that:

(1) there exists an affine, strongly étale, and surjective morphism f : X1 → X from an

algebraic stack X1 admitting a good moduli space φ1 : X1 → X1; and

(2) for any k-point x ∈ X , the closed substack {x} admits a good moduli space.

Then X admits a good moduli space φ : X → X.

Proof. Set X2 = X1 ×X X1. By Lemma 2.9, the projections p1, p2 : X2 → X1 are strongly étale.

As f is affine, there exists a good moduli space φ2 : X2 → X2 with projections q1, q2 : X2 → X1.

Similarly, the algebraic stack X3 := X1 ×X X1 ×X X1 admits a good moduli space φ3 : X3 → X3
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and the three projections X3 → X2 are strongly étale. By Proposition 2.7(2), the induced

diagram

X3
//
////

φ3

��

X2

p1 //
p2

//

φ2

��

X1
f //

φ1

��

X

X3
//
//// X2

q1 //
q2
// X1

is Cartesian. Moreover, by the universality of good moduli spaces, there is an induced identity

map X1 → X2, an inverse X2 → X2 and a composition X2 ×q1,X1,q2 X2 → X2 giving X2 ⇒ X1

an étale groupoid structure.

To check that ∆: X2 → X1 × X1 is a monomorphism, it suffices to check that there is a

unique pre-image of (x1, x1) ∈ X1 × X1 where x1 ∈ X1(k). Let ξ1 ∈ X1 be the unique closed

point in φ−1
1 (x1). Since X1 → X is stabilizer preserving at ξ1, we can set G := AutX1(k)(ξ1) '

AutX (k)(f(ξ1)). There are diagrams

BG //

��

BG×BG

��
X2

//

��

X1 ×X1

��
X // X × X

X2

(p1,p2)
//

φ2

��

X1 ×X1

φ1×φ1

��
X2

∆ // X1 ×X1

where the squares in the left diagram are Cartesian. Suppose x2 ∈ X2(k) is a preimage of

(x1, x1) under ∆: X2 → X1 × X1. Let ξ2 ∈ X2 be the unique closed point in φ−1
2 (x2). Then

(p1(ξ2), p2(ξ2)) ∈ X1 × X1 is closed and is therefore the unique closed point (ξ1, ξ1) in the

(φ1×φ1)−1(x1, x1). But by Cartesianness of the left diagram, the point ξ2 is the unique preimage

of (ξ1, ξ1) under X2 → X1 ×X1. It follows that the point x2 is the unique preimage of (x1, x1).

Since X2 ×q1,X1,q2 X2 → X2 is an étale equivalence relation, there exists an algebraic space

quotient X and induced maps φ : X → X and X1 → X. Consider

X2
//

��

X1
//

��

X1

��
X1

// X // X

Since X2 ' X1 ×X1 X2 and X2 ' X1 ×X X1, the left and outer squares above are Cartesian.

Since X1 → X is étale and surjective, it follows that the right square is Cartesian. By descent

([Alp13, Proposition 4.7]), φ : X → X is a good moduli space. �

Proof of Theorem 1.2. After taking a disjoint union of finitely many local quotient presentations,

there exists a strongly étale, affine and surjective morphism f : W → X whereW admits a good

moduli space. The theorem now follows from Proposition 3.1.

3.2. Existence via local VGIT. To prove Theorem 1.3, we will need some preliminary lem-

mas.
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Lemma 3.2. Let G be a linearly reductive group acting on an affine variety X of finite type

over an algebraically closed field k. Let χ : G→ Gm be a non-trivial character. Let λ : Gm → G

be a one-parameter subgroup and x ∈ X−χ (k) such that x0 = limt→0 λ(t) · x ∈ XG is fixed by G.

Then 〈χ, λ〉 > 0.

Proof. As x ∈ X−χ , we have 〈χ, λ〉 ≥ 0 by the Hilbert-Mumford criterion (c.f. [AFSv14, Propo-

sition 3.5]). Suppose 〈χ, λ〉 = 0. Considering the action of G on X × A1 induced by χ via

g · (x, s) = (g · x, χ(g)−1 · s), we obtain

lim
t→0

λ(t) · (x, 1) = (x0, 1) ∈ XG × A1.

But XG is contained in the unstable locus X \X−χ since χ is a nontrivial linearization. It follows

that G · (x, 1) ∩ (XG × {0}) 6= ∅ which contradicts x ∈ X−χ (c.f. [AFSv14, Remark 3.2]). �

Lemma 3.3. [AFSv14, Proposition 3.9] Let G be a linearly reductive group with character

χ : G→ Gm and h : SpecA = X → Y = SpecB be a G-invariant morphism of affine schemes of

finite type over an algebraically closed field k. Assume that A = B⊗BGAG. Then h−1(Y +
χ ) = X+

χ

and h−1(Y −χ ) = X−χ .

Remark 3.4. While [AFSv14, Propositions 3.5 and 3.9] have an underlying characteristic 0

hypothesis, it is immediate that the proofs carry over to any characteristic.

Lemma 3.5. Let X be an algebraic stack of finite type over an algebraically closed field k, and

let L be a line bundle on X . Let X+,X− ⊂ X be open substacks, and let Z+ = X r X+,

Z− = X r X− be their reduced complements. Suppose that for all closed points x ∈ X , there

exists a local quotient presentation f : W → X around x and a Cartesian diagram

W+

��

� � // W

f
��

W−? _oo

��
X+ � � // X X−? _oo

(3.1)

where W+ =W+
L and W− =W−L are the VGIT chambers of W with respect to L. Then

(1) if z ∈ X+(k) ∩ X−(k), then the closure of z in X is contained in X+ ∩ X−, and

(2) if z ∈ X (k) is a closed point, then either z ∈ X+ ∩ X− or z ∈ Z+ ∩ Z−.

Proof. For (1), if the closure of z in X is not contained in X+∩X−, then there exists an isotrivial

specialization z  x to a closed point in X \ (X+ ∩ X−). Choose a local quotient presentation

f : W = [W/Gx] → X around x such that (3.1) is Cartesian. Since f−1(x) 6⊂ W+ ∩ W−,

the character χ = L|BGx is non-trivial. By the Hilbert-Mumford criterion ([Mum65, Theorem

2.1]), there exists a one-parameter subgroup λ : Gm → Gx such that limt→0 λ(t) ·w = w0 where

w ∈W and w0 ∈WGx are points over z and x, respectively. As w ∈W+
χ ∩W−χ and w0 ∈WGx ,

by applying Lemma 3.2 twice with the characters χ and χ−1, we see that both 〈χ, λ〉 < 0 and

〈χ, λ〉 > 0, a contradiction.

For (2), choose a local quotient presentation f : (W, w)→ (X , z) around z withW = [W/Gx].

Let χ = L|BGx be the character of L. Since w ∈ WGx , the point w is semistable with respect

to χ if and only if χ is trivial. It follows that w ∈ W+ ∩W− if χ is trivial and w /∈ W+ ∪W−
otherwise. �
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Proof of Theorem 1.3. We show that X has a good moduli space by verifying the hypotheses

of Theorem 1.2. Let x0 ∈ X be a closed point. By Lemma 3.5(2), we have either x0 ∈ X+ ∩X−
or x0 ∈ Z+ ∩ Z−. Suppose first that x0 ∈ X+ ∩ X−. Since X+ admits a good moduli space,

Proposition 2.7(3) implies we may choose a local quotient presentation f : W → X+ around

x0 which is strongly étale. By applying Lemma 2.8, we may shrink further to assume that

f(W) ⊂ X+ ∩X−. Then Lemma 3.5(1) implies that the composition f : W → X+ ↪→ X is also

strongly étale.

On the other hand, suppose x0 ∈ Z+∩Z−. Choose a local quotient presentation f : (W, w0)→
(X , x0) around x0 inducing a Cartesian diagram

W+

��

� � // W

f
��

W−? _oo

��
X+ � � // X X−? _oo

(3.2)

where W+ = W+
L and W− = W−L . We claim that, after shrinking suitably, we may assume

that f is strongly étale. In proving this claim, we make implicit repeated use of Lemma 2.8 in

conjunction with Lemma 3.3 to argue that if W ′ ⊂ W is an open substack containing w0, there

exists open substackW ′′ ⊂ W ′ containing w0 such thatW ′′ → X is a local quotient presentation

around x0 inducing a Cartesian diagram as in (3.2).

Using the hypothesis that Z+,Z−, and X+ admit good moduli spaces, we will first show that

f may be chosen to satisfy:

(A) f |f−1(Z+), f |f−1(Z−) is strongly étale, and

(B) f |W+ : W+ → X+ is strongly étale.

If f satisfies (A) and (B), then f is also strongly étale. Indeed, if w ∈ W is a closed point, then

either w ∈ f−1(Z+)∪f−1(Z−) or w ∈ f−1(X+)∩f−1(X−). In the former case, (A) immediately

implies that f is stabilizer preserving at w and f(w) is closed in X . In the latter case, (B) implies

that f is stabilizer preserving at w and that f(w) is closed in X+. Since f(w) ∈ X+ ∩ X−,

Lemma 3.5(1) implies that f(w) remains closed in X .

It remains to show that f can be chosen to satisfy (A) and (B). For (A), Proposition 2.7(3)

implies the existence of an open substack Q ⊂ f−1(Z+) containing w0 such that f |Q is strongly

étale. After shrinking W suitably, we may assume W ∩ f−1(Z+) ⊂ Q. One argues similarly for

f |f−1(Z−).

For (B), Proposition 2.7(3) implies there exists an open substack U ⊂ W+ such that f |U : U →
X+ is strongly étale and, moreover, that U contains all closed points w ∈ W+ such that

f |W+ : W+ → X+ is strongly étale at w. Let V = W+ \ U and let V be the closure of V
in W. We claim that w0 /∈ V. Once this is established, we may replace W by an appropriate

open substack of W \ V to obtain a local quotient presentation satisfying (B). Suppose, by way

of contradiction, that w0 ∈ V. Then there exists a specialization diagram

SpecK = ∆∗ //

��

V

��
SpecR = ∆

h // W
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such that h(0) = w0. There exist good moduli spacesW →W andW+ →W+, and the induced

morphism W+ → W is proper. Since the composition W+ → W+ → W is universally closed,

there exists, after an extension of the fraction field K, a diagram

∆∗ //

��

W+
� _

��

// W+

��
∆

h //

h̃
<<

W // W

and a lift h̃ : ∆→W+ that extends ∆∗ →W+ with w̃ = h̃(0) ∈ W+ closed. There is an isotrivial

specialization w̃  w0. It follows from Lemma 3.5(1) that w̃ ∈ f−1(Z−). By assumption (A),

f |U : U → X+ is strongly étale at w̃ so that w̃ ∈ U . On the other hand, the generic point of the

specialization h̃ : ∆→W+ lands in V so that w̃ ∈ V, a contradiction. Thus, w0 /∈ V as desired.

We have now shown that X satisfies condition (1) in Theorem 1.2, and it remains to verify

condition (2). Let x ∈ X (k). If x ∈ Z+ (resp., x ∈ Z−), then {x} ⊂ Z+ (resp., {x} ⊂ Z−).

Therefore, since Z+ (resp., Z−) admits a good moduli space, so does {x}. On the other hand,

if x ∈ X− ∩ X+, then Lemma 3.5(1) implies the closure of x in X is contained in X+. Since

X+ admits a good moduli space, so does {x}. Now Theorem 1.2 implies that X admits a good

moduli space φ : X → X.

Next, we will apply Proposition 3.1 to show that X− admits a good moduli space. Let

x ∈ X− be a closed point and x  x0 be the isotrivial specialization to the unique closed

point x0 ∈ X in its closure. By Proposition 2.7, there exists a strongly étale local quotient

presentation f : W → X around x0 inducing a Cartesian diagram as in (1.2). By Lemma 2.9,

the base change f− : W− → X− is strongly étale. As W− admits a good moduli space, we may

shrink W− further so that f− : W− → X− is a strongly étale neighborhood of x.

It remains to check that if x ∈ X−(k) is any point, then its closure {x} in X− admits a good

moduli space. Let x  x0 be the isotrivial specialization to the unique closed point x0 ∈ X in

the closure of x. We claim in fact that φ−1(φ(x0)) ∩ X− admits a good moduli space, which in

turn clearly implies that {x} ⊂ X− does as well. We can choose a local quotient presentation

f : (W, w0)→ (X , x0) around x0 inducing a Cartesian diagram as in (1.2). After shrinking, we

may assume by Proposition 2.7(3) that f is strongly étale and we may also assume that w0 is

the unique preimage of x0. If we set Z = φ−1(φ(x0)), then f |f−1(Z) : f−1(Z)→ Z is in fact an

isomorphism as both f−1(Z) and Z have Spec k as a good moduli space. As W− admits a good

moduli space, so does W− ∩ f−1(Z) = X− ∩Z. This establishes that X− admits a good moduli

space.

Finally, we argue that X+ → X and X− → X are proper and surjective. By taking a

disjoint union of local quotient presentations and applying Proposition 2.7(3), there exists an

affine, strongly étale, and surjective morphism f : W → X from an algebraic stack admitting

a good moduli space W → W such that W = X ×X W . Moreover, if we set W+ := f−1(X+)

and W− := f−1(X−), then W+ and W− admit good moduli spaces W+ and W− such that
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W− →W and W+ →W are proper and surjective. This gives commutative cubes

W+ �
� //

��

}}

W

��

~~

W−? _oo

��

}}
X+ �
� //

��

X

��

X−

��

? _oo

W+ //

}}

W

~~

W−oo

}}
X+ // X X−oo

(3.3)

The same argument as in the proof of the claim that X− admits a good moduli space shows that

f |W+ : W+ → X+ and f |W− : W− → X− send closed points to closed points. By Proposition

2.7(2), the left and right faces are Cartesian squares. Since the top faces are also Cartesian,

we have W+ ' X+ ×X W and W− ' X− ×X W . In particular, W+ → X+ ×X W and

W− → X− ×X W are good moduli spaces. By uniqueness of good moduli spaces, we have

X+ ×X W ' W+ and X− ×X W ' W−. Since W+ → W and W− → W are proper and

surjective, X+ → X and X− → X are proper and surjective by étale descent.

3.3. Existence via finite covers. In proving Proposition 1.4, we will appeal to the following

lemma:

Lemma 3.6. Consider a commutative diagram

X // 77Y // X

of algebraic stacks of finite type over an algebraically closed field k of characteristic 0 where X

is an algebraic space. Suppose that:

(1) the morphism X → Y is finite and surjective;

(2) the morphism X → X is cohomologically affine; and

(3) the algebraic stack Y is a global quotient stack with affine diagonal.

Then Y → X is cohomologically affine.

Proof. We may write Y = [V/GLn], where V is an algebraic space with an action of GLn. Since

X → Y is affine, X is the quotient stack X = [U/G] where U = X ×Y V . Since U → X is affine

and X → X is cohomologically affine, the morphism U → X is affine by Serre’s criterion. The

morphism U → V is finite and surjective and therefore by Chevalley’s theorem, we can conclude

that V → X is affine. Therefore Y → X is cohomologically affine. �

Proof of Proposition 1.4. Let Z be the scheme-theoretic image of X → X × Y. Since X → Y
is finite and X is separated, X → Z is finite. Since Z is a global quotient stack (as Y is), we

may apply Lemma 3.6 to conclude that the projection Z → X is cohomologically affine which

implies that Z admits a separated good moduli space. The composition Z ↪→ X × Y → Y is

finite, surjective and stabilizer preserving at closed points. Therefore, by replacing X with Z, to

prove the proposition, we may assume that f : X → Y is stabilizer preserving at closed points.



SECOND FLIP IN THE HASSETT-KEEL PROGRAM: EXISTENCE OF GOOD MODULI SPACES 13

We will now show that the hypotheses of Theorem 1.2 are satisfied. Let y0 ∈ Y be a closed

point and g : (Y ′, y′0)→ (Y, y0) be a local quotient presentation around y0. Consider the Carte-

sian diagram

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

We first note that g′ is strongly étale at each point x′ ∈ f ′−1(y′0). Indeed, g′ is stabilizer

preserving at x′ as g is stabilizer preserving at y′0, and g′(x′) ∈ X is a closed as f(g′(x′)) ∈ Y is

closed. By Proposition 2.7, there exists an open substack U ′ ⊂ X ′ containing the fiber of y′0 such

that g′|U ′ is strongly étale. Therefore, y′0 /∈ Z = Y ′ \ f ′(X ′ \ U ′) and g|Y ′\Z is strongly étale. By

shrinking further using Lemma 2.8, we obtain a local quotient presentation g : Y ′ → Y around

y0 which is strongly étale.

Finally, let y ∈ Y(k) and x ∈ X (k) be any preimage. Set X0 = {x} ⊂ X and Y0 = {y} ⊂ Y. As

X0 → Y0 is finite and surjective, X0 → Spec k is a good moduli space and Y0 is a global quotient

stack, we may conclude using Lemma 3.6 that Y0 admits a good moduli space. Therefore, we

may apply Theorem 1.2 to establish the proposition.

Remark. The hypothesis that X is separated in Proposition 1.4 is necessary. For example, let

X be the affine line with 0 doubled and let Z2 act on X by swapping the points at 0 and fixing

all other points. Then X → [X/Z2] satisfies the hypotheses but [X/Z2] does not admit a good

moduli space.

4. Application to Mg,n(α)

In this section, we apply Theorem 1.3 to prove that the algebraic stacksMg,n(α) admit good

moduli spaces (Theorem 1.1). We already know that the inclusions

Mg,n(α+ ε) ↪→Mg,n(α)←↩Mg,n(α− ε)

arise from local VGIT with respect to δ − ψ ([AFSv14, Theorem 3.17]). Thus, it only remains

to show that for each critical value αc ∈ {9/11, 7/10, 2/3}, the closed substacks

Sg,n(αc) :=Mg,n(αc) \Mg,n(αc + ε)

Hg,n(αc) :=Mg,n(αc) \Mg,n(αc − ε)

admit good moduli spaces. We will prove this statement by induction on g. As with the boundary

strata of Mg,n, Hg,n(αc) can be described (up to a finite cover) as a product of moduli spaces

of αc-stable curves of lower genus. Likewise, Sg,n(αc) can be described (up to a finite cover)

as stacky projective bundles over moduli spaces of αc-stable curves of lower genus. We use

induction to deduce that these products and projective bundles admit good moduli spaces, and

then apply Proposition 1.4 to conclude that Sg,n(αc) and Hg,n(αc) admit good moduli spaces.

4.1. Properties of α-stability. We will make repeated use of the following elementary prop-

erties of α-stability.

Lemma 4.1 ([AFSv14, Lemma 2.17]).
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(1) If (C̃1, {pi}ni=1, q1) and (C̃2, {pi}ni=1, q2) are α-stable curves, then

(C̃1, {pi}ni=1, q1) ∪ (C̃2, {pi}ni=1, q2)/(q1 ∼ q2)

is α-stable.

(2) If (C̃, {pi}ni=1, q1, q2) is an α-stable curve, then

(C̃, {pi}ni=1, q1, q2)/(q1 ∼ q2)

is α-stable provided one of the following conditions hold:

• q1 and q2 lie on disjoint irreducible components of C̃,

• q1 and q2 lie on distinct irreducible components of C̃, and at least one of these

components is not a smooth rational curve.

Lemma 4.2 ([AFSv14, Lemma 2.19]). Let (C, {pi}ni=1) be an n-pointed curve with ωC(
∑

i pi)

ample, and suppose q ∈ C is an αc-critical singularity. Then the stable pointed normalization

of (C, {pi}ni=1) at q ∈ C is αc-stable if and only if (C, {pi}ni=1) is αc-stable.

4.2. Existence for Sg,n(αc). In this section, we use induction on g to prove that Sg,n(αc)

admits a good moduli space. The base case is handled by the following lemma.

Lemma 4.3. We have:

S1,1(9/11) ' BGm,

S1,2(7/10) ' BGm, and

S2,1(2/3) ' [A1/Gm], where Gm acts with weight 1.

In particular, the algebraic stacks S1,1(9/11), S1,2(7/10), S2,1(2/3) admit good moduli spaces.

Proof. The algebraic stacks S1,1(9/11) and S1,2(7/10) each contain a unique C-point, namely

the 9
11 -atom and the 7

10 -atom, and each of these curves have a Gm-automorphism group. The

stack S2,1(2/3) contains two isomorphism classes of curves, namely the 2
3 -atom, and the rational

ramphoid cuspidal curve with non-trivial crimping. We construct this stack explicitly as follows:

Start with the constant family (P1×A1,∞×A1), let c be a coordinate on A1, and t a coordinate

on P1 − ∞. Now let P1 × A1 → C be the map defined by the inclusion of algebras C[t2 +

ct3, t5] ⊂ C[c, t] on the complement of the infinity section, and defined as an isomorphism on

the complement of the zero section. Then (C → A1,∞× A1) is a family of rational ramphoid

cuspidal curves whose fiber over 0 ∈ A1 is a 2
3 -atom. Furthermore, Gm acts on the base and

total space of this family by t → λ−1t, c → λc, since the subalgebra C[t2 + ct3, t5] ⊂ C[c, t] is

invariant under this action. Thus, the family descends to [A1/Gm] and there is an induced map

[A1/Gm]→M2,1(2/3). This map is a locally closed immersion by [vdW10, Theorem 1.109], and

the image is precisely S2,1(2/3). Thus, S2,1(2/3) ' [A1/Gm] as desired. �

For higher values of (g, n), the key observation is that every curve in Sg,n(αc) can be obtained

from an αc-stable curve by ‘sprouting’ an appropriate singularity. We make this precise in the

following definition.

Definition 4.4. If (C, p1) is a 1-pointed curve, we say that C ′ is a (ramphoid) cuspidal sprouting

of (C, p1) if C ′ contains a (ramphoid) cusp q ∈ C ′, and the pointed normalization of C ′ at q is

isomorphic to one of:
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(a) (C, p1); or

(b) (C ∪ P1,∞) where C and P1 are glued nodally by identifying p1 ∼ 0.

If (C, p1, p2) is a 2-pointed curve, we say that C ′ is a tacnodal sprouting of (C, p1, p2) if C ′

contains a tacnode q ∈ C ′, and the pointed normalization of C ′ at q is isomorphic to one of:

(a) (C, p1, p2);

(b) (C ∪ P1, p1,∞) where C and P1 are glued nodally by identifying p2 ∼ 0;

(c) (C ∪ P1, p2,∞) where C and P1 are glued nodally by identifying p1 ∼ 0; or

(d) (C ∪P1 ∪P1,∞1,∞2) where C is glued nodally to two copies of P1 along p1 ∼ 0, p2 ∼ 0.

In this definition, we allow the possibility that (C, p1, p2) = (C1, p1)
∐

(C2, p2) is disconnected,

with one marked point on each connected component.

If (C, p1) is a 1-pointed curve, we say that C ′ is a one-sided tacnodal sprouting of (C, p1) if C ′

contains a tacnode q ∈ C ′, and the pointed normalization of C ′ at q is isomorphic to one of:

(a) (C, p1)
∐

(P1, 0); or

(b) (C ∪ P1,∞)
∐

(P1, 0) where C and P1 are glued nodally by identifying p1 ∼ 0.

Remark. Suppose C ′ is a cuspidal sprouting, one-sided tacnodal sprouting or ramphoid cuspidal

sprouting of (C, p1) (resp., tacnodal sprouting of (C, p1, p2)) with αc-critical singularity q ∈ C ′.
Then (C, p1) (resp., (C, p1, p2)) is the stable pointed normalization of C ′ along q. By Lemma

4.2, C ′ is αc-stable if and only if (C, p1) (resp., (C, p1, p2)) is αc-stable.

Lemma 4.5. Fix αc ∈ {9/11, 7/10, 2/3}, and suppose (C, {pi}ni=1) ∈ Sg,n(αc).

(1) If (g, n) 6= (1, 1), then (C, {pi}ni=1) is a cuspidal sprouting of a 9/11-stable curve in

Mg−1,n+1(9/11).

(2) If (g, n) 6= (1, 2), then one of the following holds:

(a) (C, {pi}ni=1) is a tacnodal sprouting of a 7/10-stable curve in Mg−2,n+2(7/10);

(b) (C, {pi}ni=1) is a tacnodal sprouting of a 7/10-stable curve in

Mg−i−1,n−m+1(7/10)×Mi,m+1(7/10); or

(c) (C, {pi}ni=1) is a one-sided tacnodal sprouting of a 7/10-stable curve inMg−1,n(7/10).

(3) If (g, n) 6= (2, 1), then (C, {pi}ni=1) is a ramphoid cuspidal sprouting of a 2/3-stable curve

in Mg−2,n+2(2/3).

Proof. If (C, {pi}ni=1) ∈ Sg,n(αc), then (C, {pi}ni=1) contains an αc-critical singularity q ∈ C. The

stable pointed normalization of (C, {pi}ni=1) along q is well-defined by our hypothesis on (g, n),

and is αc-stable by Lemma 4.2. �

Lemma 4.5 gives a set-theoretic description of Sg,n(αc), and we must now augment this to

a stack-theoretic description. This means constructing universal families of cuspidal, tacnodal,

and ramphoid cuspidal sproutings. A nearly identical construction was carried out in [Smy11b]

for elliptic m-fold points (in particular, cusps and tacnodes), and for all curve singularities

in [vdW10]. The only key difference is that here we allow all branches to sprout P1’s rather

than a restricted subset. Therefore, we obtain non-separated, stacky compactifications (rather

than Deligne-Mumford compactifications) of the associated crimping stack of the singularity.
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In what follows, if C → T is any family of curves with a section τ , we say that C has an Ak-

singularity along τ if, étale locally on the base, the Henselization of C along τ is isomorphic to

the Henselization of T ×C[x, y]/(y2−xk+1) along the zero section (cf. [vdW10, Definition 1.64]).

Definition 4.6. Let Sproutg,n(Ak) denote the stack of flat families of curves (C → T, {σi}n+1
i=1 )

satisfying

(1) (C → T, {σi}ni=1) is a T -point of Ug,n(Ak); and

(2) C has an Ak-singularity along σn+1.

The fact that Sproutg,n(Ak) is an algebraic stack over (Schemes/C) is verified in [vdW10].

There are obvious forgetful functors

Fk : Sproutg,n(Ak)→ Ug,n(Ak),

given by forgetting the section σn+1.

Proposition 4.7. Fk is representable and finite.

Proof. It is clear that Fk is representable. The fact that Fk is quasi-finite follows from the

observations that a curve (C, {pi}ni=1) in Ug,n(Ak) has only a finite number of Ak-singularities and

that for a C-point x ∈ Sproutg,n(Ak), the induced map AutSproutg,n(Ak)(x)→ AutUg,n(Ak)(Fk(x))

on automorphism groups has finite cokernel. To show that Fk is finite, it now suffices to verify

the valuative criterion for properness: Let ∆ be the spectrum of a discrete valuation ring, let

∆∗ denote the spectrum of its fraction field, and suppose we are given a diagram

∆∗ //

��

Sproutg,n(Ak)

Fk
��

∆ // Ug,n(Ak)

This corresponds to a diagram of families,

C∆∗

π∆∗

��

// C

π
��

∆∗ //

σn+1

DD

∆

such that C∆∗ has Ak-singularity along σn+1. Since C → ∆ is proper, σn+1 extends uniquely to a

section of π, and since the limit of an Ak-singularity in Ug,n(Ak) is necessarily an Ak-singularity,

C has an Ak-singularity along σn+1. This induces a unique lift ∆→ Sproutg,n(Ak), cf. [vdW10,

Theorem 1.109]. �

The algebraic stacks Sproutg,n(Ak) also admit stable pointed normalization functors, given

by forgetting the crimping data of the singularity along σn+1. To be precise, if (C → T, {σ}n+1
i=1 )
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is a T -point of Sproutg,n(Ak), there exists a commutative diagram

C̃
φ

xx

��

ψ

��
Cs

&&

C

��
T

{σ̃i}n+k̄
i=1

GG

{σsi }
n+k̄
i=1

[[

{σi}n+k̄
i=1

LL

satisfying:

(1) (C̃ → T, {σ̃i}n+k̄
i=1 ) is a family of (n+ k̄)-pointed curves, where k̄ ∈ {1, 2};

(2) ψ is the pointed normalization of C along σn+1, i.e. ψ is finite and restricts to an

isomorphism on the open set C̃ − ∪k̄i=1σ̃n+i; and

(3) φ is the stabilization of (C̃, {σ̃i}n+k̄
i=1 ), i.e. φ is the morphism associated to a high multiple

of the line bundle ωC̃/T (Σn+k̄
i=1 σ̃i).

Remark 4.8. Issues arise when defining the stable pointed normalization for (g, n) small relative

to k. From now on, we assume k ∈ {2, 3, 4}, and that (g, n) 6= (1, 1), (1, 2), (2, 1) when k = 2, 3, 4,

respectively. This ensures that the stabilization morphism φ is well-defined. Indeed, under

these hypotheses, ωC̃(Σiσ̃i) will be relatively big and nef, and the only components of fibers of

(C̃, {σ̃i}n+k̄
i=1 ) on which ωC̃(Σiσ̃i) has degree zero will be P1’s that meet the rest of the curve in

a single node and are marked by one of the sections {σ̃n+i}k̄i=1. The effect of φ is simply to

blow-down these P1’s.

Since normalization and stabilization are canonically defined, the association

(C → T, {σi}ni=1) 7→ (Cs → T, {σsi }n+k̄
i=1 )

is functorial, and we obtain normalization functors:

N2 : Sproutg,n(A2)→ Ug−1,n+1(A2),

N3 : Sproutg,n(A3)→
∐

g1+g2=g
n1+n2=n

(
Ug1,n1+1(A3)× Ug2,n2+1(A3)

) ∐
Ug−2,n+2(A3)

∐
Ug−1,n+1(A3),

N4 : Sproutg,n(A4)→ Ug−2,n+1(A4).

The connected components of the range of N3 correspond to the different possibilities for the

stable pointed normalization of C along σn+1. Note that the last case Ug−1,n+1(A3) corresponds

to a one-sided tacnodal sprouting, i.e. one connected component of the pointed normalization

of C along σn+1 is a family of 2-pointed P1’s. It is convenient to distinguish these possibilities

by defining:

Sproutnsg,n(A3) = N−1
3 (Ug−2,n+2(A3)),

Sproutg1,n1
g,n (A3) = N−1

3 (Ug1,n1+1(A3)× Ug2,n2+1(A3)) , and

Sprout0,2
g,n(A3) = N−1

3 (Ug−1,n+1(A3)).

The following key proposition shows that Nk makes Sproutg,n(Ak) a stacky projective bundle

over the moduli stack of pointed normalizations.
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We will use the following notation: If E is a locally free sheaf on an algebraic stack X , we let

V (E) denote the total space of the associated vector bundle, [V (E)/Gm] the quotient stack for

the natural action of Gm on the fibers of V (E), and p : [V (E)/Gm]→ T the natural projection.

Proposition 4.9. In the following statements, we let (π : C → Ug,n(Ak), {σi}ni=1) denote the

universal family over Ug,n(Ak), and (π : C → Ug1,n1(Ak)× Ug2,n2(Ak), {σi}n1
i=1, {τi}

n2
i=1) the uni-

versal family over Ug1,n1(Ak)× Ug2,n2(Ak).

(1) Let E be the invertible sheaf on Ug−1,n+1(A2) defined by

E := π∗ (OC(−2σn+1)/OC(−3σn+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ' Sproutg,n(A2)

such that N2 ◦ γ = p.

(2) Let E be the locally free sheaf on Ug−2,n+2(A3) defined by

E := π∗ (OC(−σn+1)/OC(−2σn+1)⊕OC(−σn+2)/OC(−2σn+2))

Then there exists an isomorphism

γ : [V (E)/Gm] ' Sproutnsg,n(A3)

such that N3 ◦ γ = p.

(3) Let E be the locally free sheaf on Ug1,n1+1(A3)× Ug2,n1+1(A3) defined by

E := π∗ (OC(−σn1+1)/OC(−2σn1+1)⊕OC(−τn2+1)/OC(−2τn2+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ' Sproutg1,n1
g,n (A3)

such that N3 ◦ γ = p.

(4) Let E be the locally free sheaf on Ug−1,n+1(A3) defined by

E := π∗ (OC(−σn+1)/OC(−2σn+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ' Sprout0,2
g,n(A3)

such that N3 ◦ γ = p.

(5) Let E be the locally free sheaf on Ug−2,n+1(A4) defined by

E := π∗ (OC(−2σn+1)/OC(−4σn+1))

Then there exists an isomorphism

γ : [V (E)/Gm] ' Sproutg,n(A4)

such that N4 ◦ γ = p.
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Proof. We prove the hardest case (5), and leave the others as an exercise to the reader. To

construct a map γ : [V (E)/Gm] → Sproutg,n(A4), we start with a family (π : C → X, {σi}n+1
i=1 )

in Ug−2,n+1(A4), and construct a family of ramphoid cuspidal sproutings over [V (EX)/Gm],

where

EX := π∗ (OC(−2σn+1)/OC(−4σn+1)) .

Let V := V (EX), p : V → X the natural projection, and (CV → V, σV ) the family obtained from

(C → X,σn+1) by base change along p. As the construction is local around σn+1, we will not

keep track of {σi}ni=1 for the remainder of the argument. If we set EV = p∗EX , there exists a

tautological section e : OV → EV . Let Z ⊂ V denote the divisor along which the composition

OV → EV → (πV )∗ (OCV (−2σV )/OCV (−3σV ))

vanishes, and let φ : C̃ → CV be the blow-up of CV along σV (Z). Since σV (Z) ⊂ CV is a regular

subscheme of codimension 2, the exceptional divisor E of the blow-up is a P1-bundle over σV (Z).

In other words, for all z ∈ Z, we have

C̃z = Cz ∪ Ez = Cz ∪ P1.

Let σ̃ be the strict transform of σV on C̃, and observe that σ̃ passes through a smooth point of

the P1 component in every fiber over Z. We will construct a map C̃ → C′ which crimps σ̃ to a

ramphoid cusp, and C′ → X will be the desired family of ramphoid cuspidal sproutings.

Setting π̃ : C̃ → CV → V and

Ẽ = π̃∗
(
OC̃(−2σ̃)/OC̃(−4σ̃)

)
we claim that e induces a section ẽ : OV → Ẽ with the property that the composition

OV → Ẽ → π̃∗
(
OC̃(−2σ̃)/OC̃(−3σ̃)

)
is never zero. To see this, let U = SpecR ⊂ X be an open affine along which E is trivial, and

choose local coordinates on a, b on p−1(U) = SpecR[a, b] such that the tautological section e

is given by at2 + bt3, where t is a local equation for σV on CV . In these coordinates, φ is the

blow-up along a = t = 0. Let ã, t̃ be homogeneous coordinates for the blow-up and note that on

the chart ã 6= 0, t′ := t̃/ã gives a local equation for σ̃V . In these coordinates, φ is given by

(a, b, t)→ (a, b, at′)

The section at2 +bt3 pulls back to a3(t′2 +bt′3), and t′2 +bt′3 defines a section ẽ of Ẽ over p−1(U)

with the stated property.

We will use ẽ to construct a map ψ : C̃ → C′ such that C′ has a ramphoid cusp along ψ ◦ σ̃.

It is sufficient to define ψ locally around σ̃, so we may assume π̃ is affine, i.e. C̃ := SpecV π̃∗OC̃ .
We specify a sheaf of OV -subalgebras of π̃∗OC̃ as follows: Consider the exact sequence

0→ π̃∗OC̃V (−4σ̃)→ π̃∗OC̃V (−2σ̃)→ Ẽ → 0

and let F ⊂ π̃∗OC̃ be the sheaf of OV -subalgebras generated by any inverse image of ẽ and all

functions in π̃∗OC̃(−4σ̃). We let ψ : SpecV π̃∗OC̃ → C
′ := SpecV F be the map corresponding to

the inclusion F ⊂ π̃∗OC̃ . By construction, the inclusion of the complete local rings ÔC′v ,(ψ◦σ̃)(v) ⊂
Ô
C̃v ,σ̃(v)

' C[[t]] is of the form C[[t2+bt3, t5]] ⊂ C[[t]] for every v ∈ V . Observe that C[[t2+bt3, t5]]

is isomorphic to C[[x, y]]/(y2 − x5) as a C-algebra.
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Finally, we claim that C′ → V descends to a family of ramphoid cuspidal sproutings over the

quotient stack [V/Gm]. It suffices to show that the subsheaf F ⊂ π̃∗OC̃ is invariant under the

natural action of Gm on V . Using the same local coordinates introduced above, the sheaf F is

given over the open set SpecR[a, b] by the R[a, b]-algebra generated by t′2 + bt′3 and t′5, where t′

is a local equation for σ̃ on C̃. To see that this algebra is Gm-invariant, note that the Gm-action

on V = SpecR[a, b] (acting with weight 1 on a and b) extends canonically to a Gm-action on the

blow-up, where Gm acts on ã, t̃ with weight 1 and 0, respectively. Thus, Gm acts on t′ = t̃/ã

with weight −1, so that t′2 + bt′3 is a semi-invariant. It follows that the algebra generated by

t′2 + bt′3 and t′5 is Gm-invariant as desired. Thus, we obtain a family (C′ → [V/Gm], ψ ◦ σ̃) in

Sproutg,n(A4) as desired.

To define an inverse map γ−1 : Sproutg,n(A4)→ [V/Gm], we start with a family (C → X,σ) in

Ug,n(A4) such that C has an A4-singularity along σ. We must construct a map X → [V (E)/Gm].

By taking the stable pointed normalization of C along σ, we obtain a diagram

C̃
φ

xx

��

ψ

��
Cs

''

C

��
X

σ̃

GG

σs

[[

σ

LL

satisfying

(1) (C̃ → X, σ̃) is a family of (n+ 1)-pointed curves;

(2) ψ is the pointed normalization of C along σ, i.e. ψ is finite and restricts to an isomorphism

on the open set C̃ − σ̃; and

(3) φ is the stabilization of (C̃, σ̃), i.e. φ is the morphism associated to a high multiple of

the relatively nef line bundle ωC̃/X(σ̃).

The family (Cs → X,σsi ) induces a map X → Ug−2,n+1(A4), and we must show that this lifts to

define a map X → [V (E)/Gm]. To see this, let F be the coherent sheaf defined by the following

exact sequence

0→ π∗OC ∩ π̃∗OC̃(−4σ̃) ⊂ π∗OC ∩ π̃∗OC̃(−2σ̃)→ F → 0.

The condition that C has a ramphoid cusp along ψ ◦ σ̃ implies that F ⊂ π̃∗OC̃(−2σ)/OC̃(−4σ)

is a rank one sub-bundle. In particular, F induces a sub-bundle of πs∗OCs(−2σs)/OCs(−4σs)

over the locus of fibers on which φ is an isomorphism. A local computation, similar to the one

performed in the definition of γ, shows that F extends to a subsheaf of πs∗OCs(−2σs)/OCs(−4σs)

over all of X (though not a sub-bundle; the morphism on fibers is zero precisely where φ fails to

be an isomorphism). The subsheaf F ⊂ E induces the desired morphism X → [V (E)/Gm]. �

Proposition 4.10. Let αc ∈ {9/11, 7/10, 2/3} and suppose that Mg′,n′(αc) admits a proper good

moduli space for all (g′, n′) with g′ < g. Then Sg,n(αc) admits a proper good moduli space.

Proof. Let αc = 9/11. By Lemma 4.3, we may assume (g, n) 6= (1, 1). By Proposition 4.9(1),

there is a locally free sheaf E onMg−1,n+1(9/11) such that [V (E)/Gm] is the base of the universal
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family of cuspidal sproutings of curves in Mg−1,n+1(9/11). By Lemma 4.2, the fibers of this

family are 9/11-stable so there is an induced map

Ψ: [V (E)/Gm]→Mg,n(9/11).

By Lemma 4.5, Ψ maps surjectively onto Sg,n(9/11). Furthermore, Ψ is finite by Proposition 4.7.

By hypothesis, Mg−1,n+1(9/11) and therefore [V (E)/Gm] admits a proper good moduli space.

Thus, Sg,n(9/11) admits a proper good moduli space by Proposition 1.4.

Let αc = 7/10. By Lemma 4.3, we may assume (g, n) 6= (1, 2). If g ≥ 2, Proposition

4.9(2) provides a locally free sheaf E on Mg−2,n+2(7/10) such that [V (E)/Gm] is the base of

the universal family of tacnodal sproutings of curves in Mg−2,n+2(7/10), and there is an in-

duced map [V (E)/Gm] → Mg,n(7/10). Similarly, for every pair of integers (i,m) such that

Mg−i−1,n−m+1(7/10) ×Mi,m+1(7/10) is defined, by Proposition 4.9(3), there is a locally free

sheaf E on Mg−i−1,n−m+1(7/10) ×Mi,m+1(7/10) such that [V (E)/Gm] is the universal family

of tacnodal sproutings. By Lemma 4.2, there are induced maps [V (E)/Gm] → Mg,n(7/10).

Finally, Proposition 4.9(4) provides a locally free sheaf on Mg−1,n(7/10) such that [V (E)/Gm]

is the base of the universal family of one-sided tacnodal sproutings of curves in Mg−1,n(7/10).

By Lemma 4.2, there is an induced map [V (E)/Gm] → Mg,n(7/10). The union of the maps

[V (E)/Gm] → Mg,n(7/10) cover Sg,n(7/10) by Lemma 4.5. Furthermore, each map is finite

by Proposition 4.7. By hypothesis, each of the stacky projective bundles [V (E)/Gm] admits a

proper good moduli space, and therefore so does Sg,n(7/10) by Proposition 1.4.

Let αc = 2/3. By Lemma 4.3, we may assume (g, n) 6= (2, 1). By Proposition 4.9(5), there

is a locally free sheaf E on Mg−2,n+1(2/3) such that [V (E)/Gm] is the base of the universal

family of ramphoid cuspidal sproutings of curves in Mg−2,n+1(2/3). By Lemma 4.2, there is an

induced map Ψ: [V (E)/Gm] → Mg,n(2/3) which maps surjectively onto Sg,n(2/3) by Lemma

4.5. Furthermore, Ψ is finite by Proposition 4.7. Thus, Sg,n(2/3) admits a proper good moduli

space by Proposition 1.4. �

4.3. Existence for Hg,n(αc). In this section, we use induction on g to prove that Hg,n(αc)

admits a good moduli space. The base case is handled by the following easy lemma.

Lemma 4.11. We have:

H1,1(9/11) = [A2/Gm], with weights 4, 6;

H1,2(7/10) = [A3/Gm], with weights 2, 3, 4; and

H2,1(2/3) = [A4/Gm], with weights 4, 6, 8, 10.

In particular, H1,1(9/11), H1,2(7/10), H2,1(2/3) each admit a good moduli space.

Proof. We describe the case of H2,1(2/3), as the other two are essentially identical. Consider the

family of Weierstrass tails over A4 given by:

y2 = x5z + a3x
3z3 + a2x

2z4 + a1xz
5 + a0z

6,

where the Weierstrass section is given by [1, 0, 0]. Since Gm acts on the base and total space of

this family by

x→ λ2x, y → λ5y, ai → λ10−2iai,
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the family descends to [A4/Gm]. One checks that the induced map [A4/Gm] → H2,1(2/3) is an

isomorphism. �

Lemma 4.11 gives an explicit description of the stack of elliptic tails, elliptic bridges, and

Weierstrass tails. In the case αc = 7/10 (resp., αc = 2/3), we will also need an explicit description

of the stack of elliptic chains (resp., Weierstrass chains) of length r.

Lemma 4.12. Let r ≥ 1 be an integer, and let

ECr ⊂M2r−1,2(7/10) (resp., WCr ⊂M2r,1(2/3) )

denote the closure of the locally closed substack of elliptic chains (resp., Weierstrass chains) of

length r. Then ECr (resp., WCr) admits a good moduli space.

Proof. For elliptic chains, Lemma 4.11 handles the case r = 1 as EC1 = H1,2(7/10). By induction

on r, we may assume that ECr−1 admits a good moduli space. By Proposition 4.9(3), there is a

locally free sheaf E on ECr−1×H1,2(7/10) such that [V (E)/Gm] is the base of the universal family

of tacnodal sproutings over ECr−1 ×H1,2(7/10). By Lemma 4.2, there is an induced morphism

Ψ: [V(E)/Gm] → M2r−1,2(7/10). The image of Ψ is ECr, and Ψ is finite by Proposition 4.7.

Since ECr−1 ×H1,2(7/10) admits a good moduli space, Proposition 1.4 implies that ECr admits

a good moduli space.

For Weierstrass chains, Lemma 4.11 again handles the case r = 1 as WC1 = H2,1(2/3). By

induction, we may assume that WCr−1 admits a good moduli space. By Proposition 4.9(3),

there is a locally free sheaf E on H1,2(7/10) × WCr−1 such that [V (E)/Gm] is the base of the

universal family of tacnodal sproutings over H1,2(7/10)×WCr−1. Indeed, we may take E to be

π∗ (OC(−σ)/OC(−2σ)⊕OC(−τ)/OC(−2τ)) ,

where π : C → H1,2(7/10) × WCr−1 is the universal family, σ corresponds to one of the uni-

versal sections over H1,2(7/10), and τ corresponds to the universal section over WCr−1. If

V ⊂ [V (E)/Gm] is the open locus parameterizing sproutings which do not introduce an el-

liptic bridge, then V is the complement of the sub-bundle [V (π∗OC(−τ))/Gm] ⊂ [V (E)/Gm].

Since H1,2(7/10) ×WCr−1 admits a good moduli space, and V (E)\V (π∗OC(−τ)) is affine over

H1,2(7/10) ×WCr−1, we have that V admits a good moduli space. By Lemma 4.2, there is an

induced morphism Ψ: V → M2r,1(2/3). The image of Ψ is WCr and Ψ is finite by Proposition

4.7. Thus Proposition 1.4 implies that WCr admits a good moduli space. �

For higher (g, n), we can use gluing maps to decompose Hg,n(αc) into products of lower-

dimensional moduli spaces.

Lemma 4.13. Let αc ∈ {9/11, 7/10, 2/3}. There exist finite gluing morphisms

Ψ: Mg1,n1+1(αc)×Mg2,n2+1(αc)→Mg1+g2,n1+n2(αc)

obtained by identifying (C, {pi}n1+1
i=1 ) and (C ′, {p′i}

n2+1
i=1 ) nodally at pn1+1 ∼ p′n2+1

Proof. Ψ is well-defined by Lemma 4.1. To see that Ψ is finite, first observe that Ψ is clearly

representable and quasi-finite. Furthermore, since the limit of a disconnecting node is a dis-

connecting node in Mg,n(αc) [AFSv14, Corollary 2.11], Ψ satisfies the valuative criterion for

properness. �
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In the case αc = 7/10, we will need two additional gluing morphisms.

Lemma 4.14. There exist finite gluing morphisms

Mg,n+2(7/10)× ECr →Mg+2r,n(7/10) , ECr →M2r(7/10),

where the first map is obtained by nodally gluing (C, {pi}n+2
i=1 ) and an elliptic chain (Z, q1, q2) at

pn+1 ∼ q1 and pn+2 ∼ q2, and the second map is obtained by nodally self-gluing an elliptic chain

(Z, q1, q2) at q1 ∼ q2.

Proof. These gluing maps are well-defined by Lemma 4.1, and finiteness follows as in Lemma

4.13. �

Proposition 4.15. Let αc ∈ {9/11, 7/10, 2/3} and suppose that Mg′,n′(αc) admits a proper good

moduli space for all (g′, n′) satisfying g′ < g. Then Hg,n(αc) admits a proper good moduli space.

Proof. Let αc = 9/11. By Lemma 4.11, we may assume (g, n) 6= (1, 1). By Lemma 4.13, there

exists a finite gluing morphism

Ψ: Mg−1,n+1(9/11)×H1,1(9/11)→Mg,n(9/11),

whose image is precisely Hg,n(9/11). Now Hg,n(9/11) admits a proper good moduli space by

Proposition 1.4.

Let αc = 7/10. For every r such thatMg−2r,n+2(7/10) (resp.,Mg−2r−1,n(7/10)) exists, Lemma

4.14 (resp., Lemma 4.13) gives a finite gluing morphism

Mg−2r,n+2(7/10)× ECr → Hg,n(7/10)(
resp., Mg−2r−1,n(7/10)× ECr → Hg,n(7/10)

)
,

that identifies (C, {pi}n+2
i=1 ) (resp., (C, {pi}ni=1)) to (Z, q1, q2) at pn+1 ∼ q1, pn+2 ∼ q2 (resp.,

pn ∼ q1). In addition, for every triple of integers (i,m, r) such that the stack Mi,m+1(7/10) ×
Mg−i−2r+1,n−m+1(7/10) is defined, Lemma 4.13 gives a finite gluing morphism

Mi,m+1(7/10)×Mg−i−2r+1,n−m+1(7/10)× ECr → Hg,n(7/10),

which identifies (C, {pi}m+1
i=1 ), (C ′, {p′i}

n−m+1
i=1 ), (Z, q1, q2) nodally at pm+1 ∼ q1, p′n−m+1 ∼ q2.

Finally, if (g, n) = (2r, 0), Lemma 4.14 gives a finite gluing morphism

ECr → H2r(7/10),

which nodally self-glues (Z, q1, q2) at q1 ∼ q2. The union of these gluing morphisms covers

Hg,n(7/10). Thus, Hg,n(7/10) admits a proper good moduli space by Proposition 1.4 and Lemma

4.12.

Let αc = 2/3. By Lemma 4.11, we may assume (g, n) 6= (2, 1). For each r = 1, . . . , bg2c,
Lemma 4.13 provides a finite gluing morphism

Mg−2r,n+1(2/3)×WCr(2/3)→Mg,n(2/3)

(if r = g/2 and n = 1, we consider Mg−2r,n+1(2/3) as the emptyset). The union of these gluing

morphisms cover Hg,n(2/3). Now Hg,n(2/3) admits a proper good moduli space by Proposition

1.4 and Lemma 4.12. �
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4.4. Existence for Mg,n(α).

Proof of Theorem 1.1. Fix αc ∈ {9/11, 7/10, 2/3}. Note that M0,n(αc) = M0,n, so M0,n(αc)

admits a proper good moduli space for all n. By induction on g, we may assume thatMg′,n′(αc)

admits a proper good moduli space for all (g′, n′) with g′ < g. Note that Mg,n(α) =Mg,n for

α > 9/11. By descending induction on α, we may now assume that Mg,n(α) admits a good

moduli space for all α ≥ αc+ε. By [AFSv14, Theorem 3.17], the inclusions Mg,n(α + ε) ↪→
Mg,n(α)←↩Mg,n(α− ε) arise from local VGIT with respect to δ−ψ, and Propositions 4.15 and

4.10 imply that Hg,n(αc) = Mg,n(αc) \Mg,n(αc − ε) and Sg,n(αc) = Mg,n(αc) \Mg,n(αc + ε)

admit proper good moduli spaces. Now Theorem 1.3 implies that Mg,n(αc) and Mg,n(αc − ε)
admit proper good moduli spaces fitting into the stated diagram. �

Appendix A.

In this appendix, we give examples of algebraic stacks including moduli stacks of curves which

fail to have a good moduli space owing to a failure of conditions (1a), (1b), and (2) in Theorem

1.2. Note that there is an obviously necessary topological condition for a stack to admit a good

moduli space, namely that every k-point has a unique isotrivial specialization to a closed point,

and each of our examples satisfies this condition. The purpose of these examples is to illustrate

the more subtle kinds of stacky behavior that can obstruct the existence of good moduli spaces.

We work over an algebraically closed field of characteristic 0.

A.1. Failure of condition (1a) in Theorem 1.2.

Example A.1. Let X = [X/Z2] be the quotient stack where X is the non-separated affine

line and Z2 acts on X by swapping the origins and fixing all other points. The algebraic stack

clearly satisfies condition (1b) and (2). Then there is an étale, affine morphism A1 → X which

is stabilizer preserving at the origin but is not stabilizer preserving in an open neighborhood.

The algebraic stack X does not admit a good moduli space.

While the above example may appear entirely pathological, we now provide two natural

moduli stacks similar to this example.

Example A.2. Consider the Deligne-Mumford locus X ⊂ [Sym4 P1/PGL2] of unordered tuples

(p1, p2, p3, p4) where at least three points are distinct. Consider the family (0, 1, λ,∞) with

λ ∈ P1. When λ /∈ {0, 1,∞}, Aut(0, 1, λ,∞) ∼= Z/2Z × Z/2Z; indeed, if σ ∈ PGL2 is the

unique element such that σ(0) = ∞, σ(∞) = 0 and σ(1) = λ, then σ([x, y]) = [y, λx] so that

σ(λ) = 1 and therefore σ ∈ Aut(0, 1, λ,∞). Similarly, there is an element which acts via 0↔ 1,

λ ↔ ∞ and an element which acts via 0 ↔ λ, 1 ↔ ∞. However, if λ ∈ {0, 1,∞}, then

Aut(0, 1, λ,∞) ∼= Z/2Z.

Therefore, any étale neighborhood f : [SpecA/Z2]→ X of x = (0, 1,∞,∞) will be stabilizer

preserving at x but not in any open neighborhood. This failure of condition (1a) here is due to

the fact that automorphisms of the generic fiber do not extend to the special fiber. The algebraic

stack X does not admit a good moduli space but we note that if one enlarges the stack X to

[(Sym4 P1)ss/PGL2] by including the point (0, 0,∞,∞), there does exist a good moduli space.
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Example A.3. Let V2 be the stack of all reduced, connected curves of genus 2, and let [C] ∈ V2

denote a cuspidal curve whose pointed normalization is a generic 1-pointed smooth elliptic

curve (E, p). We will show that any Deligne-Mumford open neighborhood M ⊂ V2 of [C] is

non-separated and fails to satisfy condition (1a).

Note that Aut(C) = Aut(E, p) = Z/2Z. Thus, to show that no étale neighborhood

[Def(C)/Aut(C)]→M

can be stabilizer preserving where Def(C) = SpecA is an Aut(C)-equivariant algebraized

miniversal deformation space, it is sufficient to exhibit a family C → ∆ whose special fiber

is C, and whose generic fiber has automorphism group Z/2Z× Z/2Z. To do this, let C ′ be the

curve obtained by nodally gluing two identical copies of (E, p) along their respective marked

points. Then C ′ admits an involution swapping the two components, and a corresponding degree

2 map C ′ → E ramified over the single point p. We may smooth C ′ to a family C′ → ∆ of

smooth double covers of E, simply by separating the ramification points. By [Smy11a, Lemma

2.12], there exists a birational contraction C′ → C contracting one of the two copies of E in the

central fiber to a cusp. The family C → ∆ now has the desired properties; the generic fiber has

both a hyperelliptic and bielliptic involution while the central fiber is C.

A.2. Failure of condition (1b) in Theorem 1.2.

Example A.4. Let X = [A2 \ 0/Gm] where Gm acts via t · (x, y) = (x, ty). Let U = {y 6= 0} =

[Spec k[x, y]y/Gm] ⊂ X . Observe that the point (0, 1) is closed in U and X . Then the open

immersion f : U → X has the property that f(0, 1) ∈ X is closed while for x 6= 0, (x, 1) ∈ U is

closed but f(x, 1) ∈ X is not closed. In other words, f : U → X does not send closed points to

closed points and, in fact, there is no étale neighborhood W → X of (0, 1) which sends closed

points to closed points. The algebraic stack X does not admit a good moduli space.

Example A.5. LetM =Mg ∪M1 ∪M2, whereM1 consists of all curves of arithmetic genus

g with a single cusp and smooth normalization, andM2 consist of all curves of the form D∪E0,

where D is a smooth curve of genus g − 1 and E0 is a rational cuspidal curve attached to C

nodally.

We observe thatM has the following property: If C = D∪E, where D is a curve of genus g−1

and E is an elliptic tail, then [C] ∈M is a closed point if and only if D is singular. Indeed, if D

is smooth, then C admits an isotrivial specialization to D ∪E0, where E0 is a rational cuspidal

tail. Now consider any curve of the form C = D ∪ E where D is a singular curve of genus

g − 1 and E is a smooth elliptic tail, and, for simplicity, assume that D has no automorphisms.

We claim that there is no étale neighborhood of the form [Def(C)/Aut(C)]→M, which sends

closed points to closed points. Indeed, curves of the form D′ ∪ E where D′ is smooth will

appear in any such neighborhood and will obviously be closed in [Def(C)/Aut(C)] (since this

is a Deligne-Mumford stack), but are not closed in M.

A.3. Failure of condition (2) in Theorem 1.2.

Example A.6. Let X = [X/Gm] where X is the nodal cubic curve with the Gm-action given by

multiplication. Observe that X is an algebraic stack with two points – one open and one closed.

But X does not admit a good moduli space; if it did, X would necessarily be cohomologically
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affine and consequently X would be affine, a contradiction. However, there is an étale and affine

(but not finite) morphism W = [Spec(k[x, y]/xy)/Gm] → X where Gm = Spec k[t, t−1] acts on

Spec k[x, y]/xy via t · (x, y) = (tx, t−1y) which is stabilizer preserving and sends closed points to

closed points; however, the two projections W ×X W ⇒W do not send closed points to closed

points.

To realize this étale local presentation concretely, we may express X = Y/Z2 where Y is

the union of two P1’s with coordinates [x1, y1] and [x2, y2] glued via nodes at p = 01 = 02 and

q =∞1 =∞2 by the action of Z/2Z where −1 acts via [x1, y1]↔ [y2, x2]. There is a Gm-action

on Y given by t · [x1, y1] = [tx1, y1] and t · [x2, y2] = [x1, ty1] which descends to the Gm-action on

X. There is a finite étale morphism [Y/Gm]→ X , but [Y/Gm] is not cohomologically affine. If

we instead, consider the open substack W = [(Y \ {p})/Gm], then W ∼= [Spec(k[x, y]/xy)/Gm]

is cohomologically affine and there is an étale representable morphism f : W → X . It is easy to

see that

W ×X W ∼= [(Y \ {p})/Gm]
∐

[(Y \ {p, q})/Gm]

But [(Y \ {p, q})/Gm] ∼= Spec k
∐

Spec k and the projections p1, p2 : W ×X W →W correspond

to the inclusion of the two open points into W which clearly don’t send closed points to closed

points.

Example A.7. Consider the algebraic stack Mss,1
g of Deligne-Mumford semistable curves C

where any rational subcurve connected to C at only two points is smooth. Let D0 be the Deligne-

Mumford semistable curve D′ ∪ P1, obtained by gluing a P1 to a smooth genus g − 1 curve D′

at two points p, q. For simplicity, let us assume that Aut(D′, {p, q}) = 0, so Aut(D0) = Gm.

There is a unique isomorphism class of curves which isotrivially specializes to D0, namely the

nodal curve D1 obtained by gluing D at p and q. Thus, {[D1]} has two points—one open and

one closed. In fact, {[D1]} is isomorphic to the quotient stack [X/Gm] considered in Example

A.6.

References

[AFS15] Jarod Alper, Maksym Fedorchuk, and David Ishii Smyth, Projectivity of the moduli space of α-stable

curves and the log minimal program for Mg,n, 2015.
[AFSv14] Jarod Alper, Maksym Fedorchuk, David Ishii Smyth, and Frederick van der Wyck, Log minimal model

program for the moduli space of stable curves: The second flip, 2014.
[AK14] Jarod Alper and Andrew Kresch, Equivariant versal deformations of semistable curves, https: //

maths-people. anu. edu. au/ ~ alperj/ semistable. pdf , 2014.
[Alp10] Jarod Alper, On the local quotient structure of Artin stacks, J. Pure Appl. Algebra 214 (2010), no. 9,

1576–1591.
[Alp13] Jarod Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–

2402.
[HH09] Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first

divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471–4489.
[HH13] , Log minimal model program for the moduli space of stable curves: the first flip, Ann. of Math.

(2) 177 (2013), no. 3, 911–968.
[KM97] Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213.
[Lun73] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81–105.
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