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Abstract. It was conjectured in the recent article [EI] that all
absolute classical invariants of forms of degree m ≥ 3 on Cn can
be extracted, in a canonical way, from those of forms of degree
n(m−2) by means of assigning every form with non-vanishing dis-
criminant the so-called associated form. This surprising conjecture
was confirmed in [EI] for binary forms of degree m ≤ 6 and ternary
cubics. In the present paper, we settle the conjecture in full gener-
ality. In addition, we propose a stronger version of this statement
and obtain evidence supporting it.

1. Introduction

The paper is devoted to a new construction in classical invariant
theory proposed in the recent article [EI]. Let Qmn be the vector space
of forms of degree m on Cn with n ≥ 2, m ≥ 3. For a form Q ∈ Qmn
having a non-zero discriminant, consider the Milnor algebra M(Q) of
the isolated singularity at the origin of the hypersurface in Cn defined
by Q. As explained in [EI], the algebra M(Q) gives rise to a form
on the quotient space m/m2 with values in the (one-dimensional) socle
Soc(M(Q)) of M(Q), where m is the maximal ideal of M(Q). By
making a canonical choice of coordinates in m/m2 and Soc(M(Q)), one
obtains a form Q of degree n(m− 2) on Cn. The form Q is called the
associated form of Q.

It was shown in [EI] that for certain values of n and m one can
recover all absolute classical invariants of forms of degree m on Cn

(i.e., all GL(n,C)-invariant rational functions on Qmn ) from those of
forms of degree n(m− 2) on Cn by evaluating the latter on associated
forms. Thus, for such n and m the invariant theory of forms in Qmn
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can be extracted, in a canonical way, from that of forms in Qn(m−2)
n , at

least at the level of absolute invariants. This surprising result is known
to hold for binary forms of degrees 3 ≤ m ≤ 6 as well as for ternary
cubics (n = m = 3), and the proofs rely on explicit lists of generators
of the corresponding algebras of invariants. For binary quintics (n = 2,
m = 5) and binary sextics (n = 2, m = 6) the arguments are quite
involved and require computer-assisted calculations.

The above facts motivated a conjecture, posed in [EI], asserting that
an analogous statement holds true for all n and m. The main result of
this paper is to verify this conjecture in full generality. Furthermore, we
formulate stronger conjectures and provide some supporting evidence.

Unlike the results in [EI], our approach does not depend on explicit
descriptions of the algebras of invariants. Instead, it is based on a
systematic study of the map

Φ: Xm
n → Qn(m−2)

n , Q 7→ Q,

where Xm
n ⊂ Qmn consists of all forms with non-vanishing discriminant.

The paper is organized as follows. In Section 2, we give a detailed
definition of associated form and state the conjecture proposed in [EI]
(see Conjecture 2.3); it will be settled in Section 4. We also formulate
a stronger, more natural version of it in Conjecture 2.4. As explained
in Section 2, confirming the stronger conjecture would provide a way
for extracting a complete system of biholomorphic invariants of homo-
geneous isolated hypersurface singularities from their Milnor algebras.
Producing invariants of this kind is motivated by the so-called recon-
struction problem in singularity theory, which is the problem of finding
an effective proof of the well-known Mather-Yau theorem (see [MY]).

In Section 3, we show that two forms are linearly equivalent if and
only if their associated forms are linearly equivalent (see Theorem 3.1).
This statement provides evidence in support of Conjecture 2.4 since
the conjecture implies that the associated form Q defines the form
Q up to linear equivalence. The proof of Theorem 3.1 is based on
an explicit formula, which is of independent interest, that provides a
Macaulay inverse system for an arbitrary Artinian Gorenstein algebra
(see Proposition 3.2). The formula implies that the associated form Q
is in fact an inverse system for the Milnor algebra M(Q); Theorem 3.1
then follows from the Mather-Yau theorem.

Conjecture 2.3 is confirmed in Section 4 (see Theorem 4.1). Firstly,
we reduce the conjecture to proving that the range Φ(Xm

n ) intersects the

subset of stable forms in Qn(m−2)
n (see Proposition 4.2) and, secondly,

obtain that this intersection is always non-empty (see Proposition 4.3).
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Note that in Proposition 4.3 we in fact show that Φ(Xm
n ) intersects

X
n(m−2)
n , which allows us to introduce second associated forms (see

Remark 4.6).
Finally, in Section 5 we strengthen results of Section 4 for the case of

binary forms. First of all, we observe that there is a relative GL(2,C)-
invariant, namely the catalecticant, that does not vanish for all associ-
ated forms (see Proposition 5.1). In particular, every element of Φ(Xm

2 )
is semi-stable. Furthermore, in Proposition 5.3 we give a description
of all associated forms that are not stable, which implies that the or-
bit of every point in Φ(Xm

2 ) is closed in the affine variety of binary
forms of degree 2(m − 2) with non-zero catalecticant (see Corollary
5.4). These facts yield an easier proof of Theorem 4.1 for binary forms
and lead to a more detailed variant of Conjecture 2.4 in this case (see
Conjecture 5.6).

Acknowledgement. This work is supported by the Australian Re-
search Council.

2. The associated form and main conjectures

2.1. Preliminaries. Let Qmn be the vector space of forms of degree
m on Cn, where n ≥ 2. The dimension of this space is given by the
well-known formula

(2.1) dimCQmn =

(
m+ n− 1

m

)
.

To every non-zero Q ∈ Qmn we associate the hypersurface

VQ := {z = (z1, . . . , zn) ∈ Cn : Q(z) = 0}
and consider it as a complex space with the structure sheaf induced by
Q. The singular set of VQ is then the critical set of Q. In particular,
if m ≥ 2 the hypersurface VQ has a singularity at the origin. In this
paper, we focus on the situation when this singularity is isolated, or,
equivalently, when VQ is smooth away from 0. This occurs if and only if
Q is non-degenerate, i.e., ∆(Q) 6= 0, where ∆ denotes the discriminant
(see [GKZ], Chapter 13).

For m ≥ 3 define

Xm
n := {Q ∈ Qmn : ∆(Q) 6= 0}.

Fix Q ∈ Xm
n and consider the Milnor algebra of the singularity of VQ,

which is the complex local algebra

M(Q) := C[[z1, . . . , zn]]/J(Q),

where C[[z1, . . . , zn]] is the algebra of formal power series in z1, . . . , zn
with complex coefficients and J(Q) the Jacobian ideal in C[[z1, . . . , zn]],
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i.e., the ideal generated by all the first-order partial derivatives
Qj := ∂Q/∂zj of Q, j = 1, . . . , n. Observe that m ≥ 3 implies
dimCM(Q) > n+ 1. On the other hand, since the singularity of VQ is
isolated, the algebra M(Q) is Artinian, i.e., dimCM(Q) < ∞. There-
fore, Q1, . . . , Qn is a system of parameters in C[[z1, . . . , zn]]. Since
C[[z1, . . . , zn]] is a regular local ring and therefore Cohen-Macaulay,
Q1, . . . , Qn is a regular sequence in C[[z1, . . . , zn]]. This yields that
M(Q) is a complete intersection.

For convenience, from now on we utilize another realization of the
Milnor algebra. Namely, we write

M(Q) = C[z1, . . . , zn]/J(Q),

where we abuse notation by also using J(Q) to refer to the ideal in
C[z1, . . . , zn] generated by Qj, j = 1, . . . , n.

Let m denote the maximal ideal of M(Q), which consists of all el-
ements represented by polynomials in C[z1, . . . , zn] vanishing at the
origin. Since M(Q) is a complete intersection, [B] implies that M(Q)
is a Gorenstein algebra. This means that the socle of M(Q), defined
as Soc(M(Q)) := {x ∈ m : xm = 0}, is a one-dimensional vector space
over C (see, e.g., [Hu], Theorem 5.3). In fact, Soc(M(Q)) is spanned by
the element e0 represented by the Hessian Hess(Q) of Q (see, e.g., [Sa],

Lemma 3.3). Notice that Hess(Q) ∈ Qn(m−2)
n .

The maximal ideal m is nilpotent and we denote by ν the socle
degree of M(Q), i.e., the largest among all integers η for which mη 6= 0.
Clearly, one has Soc(M(Q)) = mν . On the other hand, for every integer
j ≥ 0, let Lj be the subspace of elements of M(Q) represented by forms
in Qjn. These subspaces constitute a grading on M(Q), i.e.,

(2.2) M(Q) =
∞⊕
j=0

Lj, LiLj ⊂ Li+j.

We then have

m =
∞⊕
j=1

Lj

and Soc(M(Q)) = Ld, with d := max{j : Lj 6= 0}. Notice that

the grading {Lj} is standard, that is, Lj = Lj1 for all j ≥ 1, which
implies d = ν. Furthermore, since Soc(M(Q)) is spanned by an element

represented by a form in Qn(m−2)
n , one also has d = n(m− 2). We thus

see that ν = n(m− 2) and the subspace

Qn(m−2)−m+1
n Q1 + · · ·+Qn(m−2)−m+1

n Qn ⊂ Qn(m−2)
n
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has codimension 1, with the line spanned by Hess(Q) being comple-
mentary to it.

For future reference, we also note several properties of the Hilbert
function

H(t) :=

n(m−2)∑
j=0

dimC Lj · tj

of the grading {Lj}. Namely, recalling that dimCQjn is given by formula
(2.1), we have

(2.3)

dimC Lj = dimCQjn, for j = 0, . . . ,m− 2,

dimC Lm−1 = dimCQm−1
n − n,

dimC Ln(m−2)−j = dimC Lj, for 0 ≤ j ≤ n(m− 2)/2,

with the last statement being a consequence, for instance, of Proposi-
tion 9 in [W].

2.2. The associated form. Let ω : Soc(M(Q)) → C be the linear

isomorphism satisfying ω(e0) = 1. Define Q ∈ Qn(m−2)
n by the formula

Q(z) := ω
(
(z1e1 + · · ·+ znen)n(m−2)

)
,

for z = (z1, . . . , zn) ∈ Cn, where ej is the element of M(Q) represented
by the coordinate function zj, j = 1, . . . , n. We call Q the associ-
ated form of Q. Observe that Q is a coordinate representation of the
following Soc(M(Q))-valued function on the quotient m/m2:

(2.4) x 7→ yn(m−2),

where y is any element of m representing x ∈ m/m2.
To give an expanded expression for Q, observe that if k1, . . . , kn

are non-negative integers such that
∑n

j=1 kj = n(m − 2), the product

ek11 . . . eknn lies in Soc(M(Q)), and thus we have

ek11 · · · eknn = µk1,...,kn(Q)e0

for some µk1,...,kn(Q) ∈ C. In terms of the coefficients µk1,...,kn(Q) the
form Q is written as

(2.5) Q(z) =
∑

k1+···+kn=n(m−2)

µk1,...,kn(Q)
(n(m− 2))!

k1! · · · kn!
zk11 · · · zknn .

Notice that each µk1,...,kn is a regular function on the affine algebraic
variety Xm

n , hence

µk1,...,kn =
P

∆p

∣∣∣
Xm

n

,
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where P ∈ C[Qmn ] and p is a non-negative integer.

2.3. The morphism Φ. We now consider the morphism

(2.6) Φm
n : Xm

n → Qn(m−2)
n , Q 7→ Q

of affine algebraic varieties. Throughout the paper, we denote this

morphism simply by Φ: Xm
n → Q

n(m−2)
n if there is no fear of confusion.

As stated in the introduction, our motivation for introducing the map
Φ comes from the recent article [EI], in which an attempt was made to
relate the invariant theory of forms in Xm

n to that of their associated
forms – see Section 2.4 for a detailed discussion.

There is a natural action of GL(n,C) on Qmn , namely

(2.7) (C,Q) 7→ QC , QC(z) := Q
(
z (C−1)T

)
for C ∈ GL(n,C), Q ∈ Qmn and z = (z1, . . . , zn) ∈ Cn. Two forms that
lie in the same GL(n,C)-orbit are called linearly equivalent.

It was shown in Theorem 2.1 of [EI] and Proposition 5.7 of [FK] that

if Q and Q̃ are two linearly equivalent forms in Qmn (hence the algebras

M(Q) and M(Q̃) are isomorphic), then the associated forms Q and Q̃
are also linearly equivalent. We will now strengthen this statement by
establishing the following fundamental equivariance property of Φ.

Proposition 2.1. For every Q ∈ Xm
n and C ∈ GL(n,C) one has

(2.8) Φ(QC) = (detC)2 Φ(Q)(C−1)T .

Proof: Let linear forms z∗j on Cn be defined by z∗1
...
z∗n

 = C−1

 z1
...
zn

 ,

and ej, e∗j the elements of M(QC) represented by zj, z
∗
j , respectively,

j = 1, . . . , n. Further, denote by e∗0 the element of Soc(M(QC)) repre-
sented by Hess(QC). Then for all non-negative integers k1, . . . , kn such
that k1 + · · ·+ kn = n(m− 2) we have

(2.9) e∗ k11 . . . e∗ knn = (detC)2 µk1,...,kn(Q)e∗0.

Next, let ω∗ : Soc(M(QC))→ C be the linear isomorphism satisfying
ω∗(e∗0) = 1. Formula (2.5) and identities (2.9) then imply

(2.10) ω∗
(
(z1e∗1 + · · ·+ zne∗n)n(m−2)

)
= (detC)2 Φ(Q)(z)
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for all points z = (z1, . . . , zn) ∈ Cn. On the other hand, for every
z ∈ Cn one has

(2.11)
ω∗
(
(z1e∗1 + · · ·+ zne∗n)n(m−2)

)
=

ω∗
(
(w1e1 + · · ·+ wnen)n(m−2)

)
= Φ(QC)(w),

where the point w = (w1, . . . , wn) is defined by w := z C−1. Identities
(2.10) and (2.11) now lead to formula (2.8), as required. 2

Remark 2.2. We note that Proposition 2.1 yields the useful fact that

the constructible set Φ(Xm
n ) ⊂ Qn(m−2)

n is GL(n,C)-invariant.

2.4. Classical invariants and the main conjectures. In this sec-
tion, we introduce the main conjectures and summarize the relevant
results of [EI].

We start by recalling the definitions of relative and absolute classical
invariants as well as related concepts (see, e.g., [Mum], [Muk], [O] for
details). A relative invariant (or relative classical invariant) of forms of
degree m on Cn is a polynomial I : Qmn → C such that for any Q ∈ Qmn
and any C ∈ GL(n,C) one has I(Q) = (detC)`I(QC), where QC is the
form introduced in (2.7) and ` a non-negative integer called the weight
of I. It follows that I is in fact homogeneous of degree `n/m. Finite
sums of relative invariants constitute the algebra

(2.12) Amn := C[Qmn ]SL(n,C)

of SL(n,C)-invariant regular functions on Qmn , called the algebra of
invariants (or algebra of classical invariants) of forms of degree m on
Cn. As shown by Hilbert in [Hi], this algebra is finitely generated. Note
that Amn is graded by the weight of the invariant.

A form Q0 ∈ Qmn is called semi-stable, if for some non-constant
I ∈ Amn one has I(Q0) 6= 0. We denote the subset of semi-stable
forms in Qmn by (Qmn )ss. Clearly, (Qmn )ss is open (here and below all
topological statements refer to the Zariski topology unless stated oth-
erwise). Furthermore, a semi-stable form Q0 ∈ Qmn is called stable, if
(i) the isotropy subgroup of Q0 under the GL(n,C)-action is finite,
and (ii) there exists a non-constant I ∈ Amn such that I(Q0) 6= 0
with the GL(n,C)-orbit of Q0 being closed in the affine variety
{Q ∈ Qmn : I(Q) 6= 0}. It then follows that the orbit of Q0 is closed
in (Qmn )ss (see [Mum], Amplification 1.11 or [Muk], Lemma 5.40). The
subset of all stable forms is open in (Qmn )ss, and we denote it by (Qmn )s.
Since any form with non-zero discriminant is stable (see [Mum], Propo-
sition 4.2), one has Xm

n ⊂ (Qmn )s. Thus the GL(n,C)-orbit of any form
in Xm

n is closed in Xm
n .
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For any two relative invariants I and Ĩ, with Ĩ 6≡ 0, the ratio I/Ĩ
yields a rational function on Qmn , which is defined, in particular, at the

points where Ĩ does not vanish. If I and Ĩ have equal weights, this
function does not change under the action of GL(n,C), and one calls

I/Ĩ an absolute invariant (or absolute classical invariant) of forms of
degree m on Cn. Such invariants form the field

Imn := Frac(Amn )0

of degree 0 elements in the fraction field of Amn . By Proposition 1 of
[DC], the field Imn may be identified with the field of GL(n,C)-invariant
rational functions on Qmn .

Finally, we define

(2.13) Imn := C[Xm
n ] GL(n,C)

to be the algebra of GL(n,C)-invariant regular functions on Xm
n . Clear-

ly, every function in Imn is the restriction to Xm
n of an element of Imn

of the form I/∆p, where I is a relative invariant and p a non-negative
integer. In other words, there is an identification Imn ' ((Amn )∆)0 with
the degree 0 elements in the localization of Amn by the discriminant ∆.

In [EI], the following conjecture was proposed.

Conjecture 2.3. For every I ∈ Imn there exists I ∈ In(m−2)
n such

that the composition I ◦ Φ is a regular function on Xm
n and coincides

with I.

We will now restate Conjecture 2.3 in different terms. First, note

that, by Proposition 2.1, if two forms Q, Q̃ ∈ Xm
n are linearly equiva-

lent, then their associated forms Q, Q̃ ∈ Qn(m−2)
n are linearly equiva-

lent. Therefore, for any I ∈ In(m−2)
n such that I◦Φ is defined at least at

one point of Xm
n , this composition is an invariant rational function on

Xm
n . Denote by Rm

n the collection of all invariant rational functions on
Xm
n obtained in this way. One has Rm

n ⊂ Imn |Xm
n

(which follows, for ex-
ample, from Proposition 1 of [DC]). Since every element of Imn |Xm

n
can

be represented as a ratio of two functions in Imn (see [Muk], Proposition
6.2), Conjecture 2.3 is equivalent to the following identity:

Rm
n = Imn |Xm

n
.

Thus, Conjecture 2.3 means that one can extract all absolute invariants
of forms of degree m from those of forms of degree n(m−2) by applying
the latter to associated forms.

For binary cubics (n = 2, m = 3) the conjecture is obvious since
all forms in X3

2 are pairwise linearly equivalent. For binary quartics
(n = 2, m = 4) and ternary cubics (n = 3, m = 3) it is easy to verify



Associated Forms in Classical Invariant Theory 9

as well (see [EI] and the earlier article [Ea]). Furthermore, in [EI]
Conjecture 2.3 was shown to hold for binary quintics (n = 2, m = 5)
and binary sextics (n = 2, m = 6), in which cases the proofs are much
harder and utilize computer algebra. These results rely on explicit lists
of generators of the corresponding algebras Amn (see, e.g., [Sy]), and one
can observe from the proofs that in fact in each of the above situations
a stronger statement takes place. We formulate it as a conjecture for
general n, m as follows.

Conjecture 2.4. For every I ∈ Imn there exists I ∈ In(m−2)
n defined at

all points of the set Φ(Xm
n ) ⊂ Qn(m−2)

n such that I ◦ Φ = I on Xm
n .

A more detailed variant of this conjecture will be given in Section 5 for
the case of binary forms (see Conjecture 5.6).

Notice that Conjecture 2.3 is a priori weaker than Conjecture 2.4.
Indeed, it may potentially happen that for some I ∈ Imn there exist

I ∈ In(m−2)
n such that I ◦ Φ is regular and coincides with I on Xm

n ,
but I is not defined at every point of Φ(Xm

n ) as a rational function on

Qn(m−2)
n . As the following simple example shows, an effect of this kind

can certainly occur for morphisms of affine algebraic varieties.

Example 2.5. Let ϕ : C→ C2 be the morphism given by ϕ(z) = (z, z)
and consider the rational function f(z1, z2) := z1/z2 on C2. Clearly, the
origin in C2 lies in the range of ϕ and is a point of indeterminacy for
f . On the other hand, f ◦ ϕ ≡ 1 is a regular function on C.

2.5. Relation to singularity theory. While the conjectures stated
above are interesting from the invariant-theoretic viewpoint, Conjec-
ture 2.4 also has an important implication for singularity theory, which
in fact was the main motivation for article [EI]. Namely, if this conjec-
ture were confirmed, it would lead to a way of extracting a complete
system of biholomorphic invariants of homogeneous isolated hypersur-
face singularities in Cn from their Milnor algebras.

Indeed, for two hypersurface singularities VQ and VQ̃ defined by

Q ∈ Xm
n and Q̃ ∈ Xm̃

n , a biholomorphic equivalence of the germs

of VQ and VQ̃ induces a linear equivalence of Q and Q̃ (by simply ex-

amining the linear part of the biholomorphism). In particular, m = m̃.
We now fix m and consider the collection Cmn of all absolute invariants

I ∈ In(m−2)
n provided by Conjecture 2.4. For every I ∈ Cmn let FI be the

function that assigns the singularity of VQ the value I(Q). We note that
this value can be calculated directly from the Milnor algebra M(Q) by
utilizing function (2.4) defined in a coordinate-free way instead of Q
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and regarding I as a function on n(m− 2)-forms on m/m2. By Propo-
sition 2.1, every FI is a biholomorphic invariant of the homogeneous
isolated hypersurface singularities arising from forms in Xm

n . Since ev-
ery non-degenerate form is stable, it follows that the GL(n,C)-orbits
in Xm

n are separated by elements of Imn (see, e.g., [EI], Proposition 3.1).
Therefore, if two homogenous isolated hypersurface singularities have
the same value for every function FI with I ∈ Cmn , Conjecture 2.4 im-
plies that the two singularities are biholomorphically equivalent. This
shows that {FI}I∈Cmn is a complete system of biholomorphic invariants
of homogeneous isolated hypersurface singularities.

In [EI], invariants of this kind were introduced in the more general
setting of quasi-homogeneous singularities, with the motivation com-
ing from the well-known reconstruction problem in singularity theory.
This problem arises from the Mather-Yau theorem, which states that
the Tjurina algebras of two isolated hypersurface singularities in Cn

are isomorphic if and only if the singularities are biholomorphically
equivalent (see [MY]). For the class of quasi-homogeneous (in particu-
lar, homogeneous) singularities this theorem is contained in the earlier
paper [Sh], in which case the Tjurina algebras coincide with the Milnor
algebras. The proofs of the theorem given in [Sh], [MY] are not con-
structive, and the reconstruction problem asks for an effective way of
recovering a hypersurface germ from the corresponding algebra. Con-
firming Conjecture 2.4 would provide a solution to the reconstruction
problem in the homogeneous case in the form of the complete system
of biholomorphic invariants {FI}I∈Cmn .

In the forthcoming sections we will study the map Φ. As a conse-
quence, Conjecture 2.3 will be established in full generality and sub-
stantial evidence in favor of Conjecture 2.4 will be obtained. We will
start with results supporting Conjecture 2.4.

3. The fibers of Φ

As explained in Section 2.5, Conjecture 2.4 implies that a form
Q ∈ Xm

n is determined up to linear equivalence by its associated form
Q. The main result of the present section yields that this consequence
of Conjecture 2.4 is indeed correct. In fact, the following stronger
statement holds.

THEOREM 3.1. Two forms Q, Q̃ ∈ Xm
n are linearly equivalent if

and only if their associated forms Q, Q̃ are linearly equivalent.

The necessity implication of Theorem 3.1 follows from Proposition
2.1. Alternatively, as mentioned in Section 2.3, this implication is a
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consequence of Theorem 2.1 of [EI] and Proposition 5.7 of [FK]. Here
we give a simultaneous proof of both implications.

3.1. Macaulay inverse systems. To prove Theorem 3.1, we will es-
tablish a general result that provides an explicit formula for an in-
verse system of any Artinian Gorenstein algebra (see Proposition 3.2).
We will then apply this result to prove that for any non-degenerate
form Q, the associated form Q is an inverse system for the Milnor
algebra M(Q).

First, we recall the definition of inverse system. What follows is valid
for any field of characteristic zero, and we fix such a field k. Let J be
an ideal in k[x1, . . . , xn] lying in the ideal generated by x1, . . . , xn. It is
well-known (see, e.g., [ER] and the references therein) that the quotient
A := k[x1, . . . , xn]/J is an Artinian Gorenstein algebra if and only if
there exists a polynomial g ∈ k[x1, . . . , xn] satisfying Ann(g) = J ,
where

Ann(g) :=

{
f ∈ k[x1, . . . , xn] : f

(
∂

∂x1

, . . . ,
∂

∂xn

)
(g) = 0

}
is the annihilator of g (here f (∂/∂x1, . . . , ∂/∂xn) is the differential op-
erator obtained by replacing xi with ∂/∂xi in f(x1, . . . , xn)). In this
case, the degree of g coincides with the socle degree of A. The freedom
in choosing g with Ann(g) = J is fully understood, and any such poly-
nomial is called a Macaulay inverse system, or simply an inverse system,
for the Artinian Gorenstein quotient A. Furthermore, if the ideal J is
homogeneous (i.e., generated by forms), one can choose g to be homoge-
neous (see, e.g., [Em], Proposition 7). We note that the classical corre-
spondence J ↔ g can be also derived from the Matlis duality (see [SV],
Section 5.4).

Inverse systems solve the isomorphism problem for Artinian Goren-
stein quotients. Namely, two such quotients are isomorphic if and only
if their inverse systems are equivalent in a certain sense (see [Em],
Proposition 16 and a more explicit formulation in [ER], Proposition
2.2). In general, the equivalence relation for inverse systems is hard
to analyze. However, in the homogeneous case, under the additional
assumption that k is algebraically closed, this relation coincides with
linear equivalence of forms and therefore leads to the following cri-
terion: two Artinian Gorenstein quotients by homogeneous ideals are
isomorphic if and only if their homogeneous inverse systems are linearly
equivalent (see [Em], Proposition 17).

We will now present an explicit way of obtaining an inverse system
for any Artinian Gorenstein quotient. To the best of our knowledge,
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the result that follows is new. Let A = k[x1, . . . , xn]/J be an Artinian
Gorenstein quotient as above with socle degree η. Define e1, . . . , en
to be the elements of A represented by x1, . . . , xn, respectively. Fix a
linear form ρ : A → k whose kernel is complementary to Soc(A) and
set

(3.1) R(x1, . . . , xn) :=

η∑
j=0

1

j!
ρ
(
(x1e1 + · · ·+ xnen)j

)
.

Proposition 3.2. The polynomial R is an inverse system for A.

Proof: Notice, first of all, that the ideal J consists of all relations
among the elements e1, . . . , en, i.e., polynomials f ∈ k[x1, . . . , xn] with
f(e1, . . . , en) = 0.

Next, fix any polynomial f ∈ k[x1, . . . , xn]

f =
∑

0≤i1,...,in≤N

ai1,...,inx
i1
1 . . . x

in
n

and calculate

(3.2)

f

(
∂

∂x1

, . . . ,
∂

∂xn

)
(R) =

∑
0≤i1,...,in≤N

ai1,...,in

η∑
j=i1+···+in

1

(j − (i1 + · · ·+ in))!
×

ρ
(

(x1e1 + · · ·+ xnen)j−(i1+···+in)ei11 . . . e
in
n

)
=

η∑
`=0

1

`!
ρ
(

(x1e1 + · · ·+ xnen)`×∑
0 ≤ i1, . . . , in ≤ N,
i1 + · · ·+ in ≤ η − `

ai1,...,inei11 . . . e
in
n

)
=

η∑
`=0

1

`!
ρ
(

(x1e1 + · · ·+ xnen)` f(e1, . . . , en)
)
.

Formula (3.2) immediately implies J ⊂ Ann(R).
Conversely, let f ∈ k[x1, . . . , xn] be an element of Ann(R). Then

(3.2) yields

(3.3)

η∑
`=0

1

`!
ρ
(

(x1e1 + · · ·+ xnen)` f(e1, . . . , en)
)

= 0.
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Collecting the terms containing xi11 . . . x
in
n in (3.3) we obtain

(3.4) ρ
(

ei11 . . . e
in
n f(e1, . . . , en)

)
= 0

for all indices i1, . . . , in. Since e1, . . . , en generate A, identities (3.4)
yield

(3.5) ρ
(
a f(e1, . . . , en)

)
= 0 for all a ∈ A.

Further, since the bilinear form (a, b) 7→ ρ(ab) is non-degenerate on A
(see, e.g., [He], p. 11), identity (3.5) implies f(e1, . . . , en) = 0. There-
fore f ∈ J , which shows that J = Ann(R) as required. 2

Suppose now that the ideal J ⊂ k[x1, . . . , xn] is homogeneous. Then,
letting Aj be the subspace of elements represented by forms of degree
j, we obtain a standard grading on A:

A =
∞⊕
j=0

Aj, AiAj ⊂ Ai+j,

with Aj = Aj1 for all j ≥ 1. Hence Soc(A) = Aη, and we choose ρ
satisfying the condition

ker ρ =

η−1⊕
j=0

Aj.

Proposition 3.2 yields the following corollary.

Corollary 3.3. Let the ideal J be homogeneous and ρ chosen as above.
Then

S(x1, . . . , xn) := ρ ((x1e1 + · · ·+ xnen)η)

is an inverse system for A. In particular, for every Q ∈ Xm
n the asso-

ciated form Q is an inverse system for M(Q).

Proof: Observe that in this case formula (3.1) for the inverse system
R reduces to that for the polynomial S up to a constant multiple. To
obtain the last statement, extend ω to all of M(Q) by setting it to be

zero on
⊕n(m−2)−1

j=0 Lj (see (2.2)). 2

Thus, Proposition 3.2 yields a simple proof of the well-known fact
that an Artinian Gorenstein quotient by a homogeneous ideal admits
a homogeneous inverse system (see, e.g., [Em], Proposition 7) and pro-
vides an explicit formula for such an inverse system.

Corollary 3.3 implies the following fact, which will be relevant later.
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Corollary 3.4. For every Q ∈ Xm
n the partial derivatives of the asso-

ciated form Q of order ` are linearly independent elements of Qn(m−2)−`
n

if 0 ≤ ` ≤ m− 2.

Proof: As shown in the first equation of (2.3), the ideal J(Q)
does not contain forms of degree less than or equal to m − 2. Since
J(Q) = Ann(Q), the corollary follows. 2

3.2. Application to associated forms. We will now apply Corollary
3.3 to obtain the main result of Section 3.

Proof of Theorem 3.1: Proposition 17 in [Em] and Corollary 3.3

imply that the associated forms Q and Q̃ are linearly equivalent if and

only if the algebras M(Q) and M(Q̃) are isomorphic. By the Mather-

Yau theorem, M(Q) and M(Q̃) are isomorphic if and only if the germs
of the hypersurfaces VQ and VQ̃ at the origin are biholomorphically
equivalent. As explained in Section 2.5, the germs are biholomorphi-

cally equivalent if and only if Q and Q̃ are linearly equivalent. The
proof is complete. 2

Notice that the map Φ is not injective. Indeed, one has, for example,
Φ(λQ) = λ−nΦ(Q) for all Q ∈ Xm

n , λ ∈ C (see Proposition 2.1). On
the other hand, Theorem 3.1 yields the following property of the fibers
of Φ.

Corollary 3.5. Every fiber of Φ consists of pairwise linearly equivalent
forms.

This fact implies that the push-forward Φ∗I of any element I ∈ Imn
is a well-defined continuous function on Φ(Xm

n ) (with respect to the
Euclidean topology). However, it is not immediately clear whether Φ∗I

extends to an absolute classical invariant on Qn(m−2)
n .

4. Confirmation of Conjecture 2.3

In this section, we settle Conjecture 2.3.

THEOREM 4.1. Conjecture 2.3 holds for all n ≥ 2, m ≥ 3.

Theorem 4.1 is a direct consequence of the following two propositions.

Proposition 4.2. Conjecture 2.3 holds true for a particular pair n,m
with n ≥ 2, m ≥ 3 provided there exists a form Q ∈ Xm

n such that its
associated form Q is stable.

Proposition 4.3. For every pair n,m with n ≥ 2, m ≥ 3, there exists
Q ∈ Xm

n such that ∆(Q) 6= 0.
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Proof of Theorem 4.1: Any form with non-zero discriminant is in
fact stable (see [Mum], Proposition 4.2). Therefore, Proposition 4.3
implies that the hypothesis of Proposition 4.2 holds for every pair
n ≥ 2, m ≥ 3. 2

Propositions 4.2 and 4.3 will be proved in Sections 4.1 and 4.2, re-
spectively.

4.1. Good quotients and the proof of Proposition 4.2. Our proof
of Proposition 4.2 relies on geometric invariant theory (GIT) quotients
of algebraic varieties by reductive algebraic groups. We briefly intro-
duce the relevant properties of such quotients and refer to Chapters 0
and 1 in [Mum] and Chapter 5 in [Muk] for further details.

Let X be a complex algebraic variety and G be a complex reductive
algebraic group acting algebraically on X. A good quotient of X by
G (if it exists) is an algebraic variety Z such that there is a surjective
affine G-invariant morphism π : X → Z for which π∗ : OZ → OGX is
an isomorphism, where OZ and OGX are the sheafs of regular functions
on Z and G-invariant regular functions on X, respectively. For the
purposes of this exposition, we do not list all the properties of good
quotients. Instead, we concentrate only on the following ones, which
will be relevant to our arguments below:

(P1) π∗ : C[Z]→ C[X]G is an isomorphism;
(P2) for x, x′ ∈ X one has π(x) = π(x′) if and only if G · x∩G · x′ 6= ∅

(where G · x is the G-orbit of x), and every fiber of π contains
exactly one closed G-orbit (the unique orbit of minimal dimen-
sion);

(P3) if Y is an algebraic variety and ϕ : X → Y is a G-invariant
morphism, then there exists a unique morphism τϕ : Z → Y
such that ϕ = τϕ ◦ π;

(P4) if A is a G-invariant closed subset of X, then π(A) is closed
in Z;

(P5) if U ⊂ X is an open subset satisfying U = π−1(π(U)), then
properties (P1)–(P4) hold with the triple (U, π(U), π|U) in
place of the triple (X,Z, π), where π(U) ⊂ Z is open by prop-
erty (P4).

The good quotient of X by G (which is unique up to isomorphism) is
denoted by X//G. If every fiber of π consists of a single (closed) orbit,
the quotient X//G is said to be geometric.

For the proof of Proposition 4.2 we will utilize good quotients in two
situations. Firstly, a good quotient exists if X is affine. This result
goes back to Hilbert for the case X = Qmn , G = SL(n,C) (see [Hi])
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and is due to Nagata and and Mumford in general (see [N] and [Mum],
Chapter 1, §2). In particular, they proved that the algebra of invariants
C[X]G is finitely generated. To construct the quotient explicitly, choose
generators f1, . . . , fM of C[X]G and set

π := (f1, . . . , fM) : X → CM .

Next, consider the ideal K := {g ∈ C[z1, . . . , zM ] : g ◦ π ≡ 0} and let
Z := {z ∈ CM : g(z) = 0 for all g ∈ K}. Then Z turns out to be a
good quotient with the quotient morphism given by π : X → Z, and
therefore one can take Z as a realization of X//G.

Secondly, good quotients are known to exist for the action of GL(n,C)
on (Qmn )s for any n ≥ 2, m ≥ 3 (see, e.g., [Mum], Theorem 1.10). In
this case, the variety (Qmn )s //GL(n,C) is quasi-projective. Since ev-
ery GL(n,C)-orbit is closed in (Qmn )s, the quotient (Qmn )s //GL(n,C) is
geometric by property (P2).

Moreover, Theorem 1.10 of [Mum] also implies that a good quotient
of the semi-stable locus (Qmn )ss by GL(n,C) exists as well and is the
projective variety defined by the graded algebra Amn (see (2.12)). The
quotient of the stable locus (Qmn )s //GL(n,C) is an open subvariety of
(Qmn )ss //GL(n,C). It follows that the function field of (Qmn )ss //GL(n,C)
(and therefore the function field of (Qmn )s //GL(n,C)) is canonically
identified with the field of absolute invariants Imn .

Proof of Proposition 4.2: Consider the affine good quotient

Z1 := Xm
n //GL(n,C),

and let π1 : Xm
n → Z1 be the corresponding GL(n,C)-invariant mor-

phism. Every GL(n,C)-orbit is closed in Xm
n , hence by property (P2)

the quotient Z1 is geometric.

Next, consider the stable locus
(
Qn(m−2)
n

)s
. The hypothesis of Propo-

sition 4.2 implies that U := Φ−1
((
Qn(m−2)
n

)s
)

is a non-empty open sub-

set of Xm
n . Further, by Proposition 2.1, U is GL(n,C)-invariant. Since

Z1 is geometric, we then have U = π−1
1 (π1(U)). Therefore, by prop-

erty (P5) of good quotients, properties (P1)–(P4) hold for the triple
(U, π1(U), π1|U), where π1(U) ⊂ Z1 is open.

Next, consider the quasi-projective good quotient

Z2 :=
(
Qn(m−2)
n

)s
//GL(n,C),

and let π2 :
(
Qn(m−2)
n

)s → Z2 be the corresponding GL(n,C)-invariant
morphism. Proposition 2.1 together with property (P3) yields that
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there exists a morphism φ : π1(U)→ Z2 such that the diagram

U
Φ|U //

π1 |U
��

(
Qn(m−2)
n

)s

π2

��
π1(U)

φ // Z2

commutes. Furthermore, Theorem 3.1 implies that φ is injective.
Next, since the set φ(π1(U)) is constructible, it contains a subset W

that is open in the closed irreducible subvariety R := φ(π1(U)) of Z2.
Let Rsng be the singular set of R. Then W \ Rsng is non-empty and
open in R as well, and we choose an open subset O ⊂ Z2 such that
W \ Rsng = O ∩ R. Clearly, W \ Rsng is closed in O. Next, choose
V ⊂ O to be an affine open subset intersecting W \ Rsng. Then the

set R̃ := V ∩ (W \ Rsng) is closed in V and we have R̃ = V ∩ R. Let

Ũ := φ−1(V ) = φ−1(R̃). By construction

φ̃ := φ|Ũ : Ũ → R̃ ⊂ V

is a bijective morphism from the irreducible variety Ũ onto the smooth

irreducible variety R̃. It now follows from Zariski’s Main Theorem

that φ̃ in fact establishes an isomorphism between Ũ and R̃ (see [TY],

Corollary 17.4.8). Thus, φ̃ : Ũ → V is a closed immersion of affine
varieties.

We will now finalize the proof of the theorem. Fix I ∈ Imn . By
property (P1) of good quotients, there is a unique element f ∈ C[Z1]

satisfying π∗1f = I. Since φ̃ : Ũ → V is a closed immersion of affine

varieties, there exists f ∈ C[V ] such that f |R̃ = φ̃∗ f |Ũ . Its pull-back π∗2f
is a GL(n,C)-invariant regular function on π−1

2 (V ). The continuation

I of π∗2f to Qn(m−2)
n is an absolute classical invariant, i.e., an element

of In(m−2)
n .

Notice that by construction the function I is defined at every point

of the open set π−1
2 (V ) ⊂

(
Qn(m−2)
n

)s
and, in particular, at every point

of Φ(π−1
1 (Ũ)) = π−1

2 (R̃) ⊂ π−1
2 (V ). Furthermore, on the dense open

subset π−1
1 (Ũ) ⊂ Xm

n we have I◦Φ = I. It then follows that the rational
function I ◦Φ is in fact regular on Xm

n and coincides with I everywhere
as required. 2

4.2. Non-degeneracy of associated forms and the proof of Pro-
position 4.3. In our proof of Proposition 4.3, we will require a charac-
terization of the non-degeneracy of an associated form. We first observe
though that Proposition 4.3 can be verified directly in the case of n = 2,
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m = 3. Indeed, every element of X3
2 is linearly equivalent to the binary

cubic z1z2(z1 +z2), and an easy computation shows that the associated
form of this cubic is proportional to the binary quadratic z2

1−z1z2 +z2
2 ,

whose discriminant clearly does not vanish. Therefore, we may exclude
the case n = 2, m = 3 from our consideration, i.e., assume that m ≥ 4
if n = 2.

For every Q ∈ Qmn , we introduce the following linear subspace of

Qn(m−2)−1
n :

V(Q) := Qn(m−2)−m
n Q1 + · · ·+Qn(m−2)−m

n Qn ⊂ Qn(m−2)−1
n .

Further, consider the following cone of powers of linear forms:

C := {(a1z1 + · · ·+ anzn)n(m−2)−1 : a1, . . . , an ∈ C} ⊂ Qn(m−2)−1
n .

Lemma 4.4. Let Q ∈ Xm
n . Then ∆(Q) 6= 0 if and only if V(Q)∩C = 0.

Proof: For a form R ∈ Q`n with ` ≥ 2, the condition ∆(R) = 0 means
that the partial derivatives R1, . . . , Rn have a common zero, say z0,
away from the origin. It then follows that these derivatives vanish on
the complex line in Cn spanned by z0. Passing to a linearly equiva-
lent form if necessary, we can assume that this line coincides with the
zn-axis. It is easy to see that a form has all its first-order partial
derivatives vanishing on the zn-axis if and only if it can be written as∑

1≤i≤j≤n−1

zizjR
ij, where Rij ∈ Q`−2

n ,

i.e., if it does not involve the monomials z`n and ziz
`−1
n , with

i = 1, . . . , n− 1.
Now let Q be an element of Xm

n . Then, by the above argument,

∆(Q) = 0 implies that Q is linearly equivalent to a form Q̃ not involv-

ing the monomials z
n(m−2)
n and ziz

n(m−2)−1
n , with i = 1, . . . , n − 1. By

Proposition 2.1, the form Q̃ is the associated form of some Q̃ ∈ Xm
n

linearly equivalent to Q. Let ẽj be the element of M(Q̃) represented by

the coordinate function zj, j = 1, . . . , n, and {L̃j} the standard grading

on M(Q̃) constructed as in (2.2). Then

(4.1)
ẽ
n(m−2)
n = 0,

ẽiẽ
n(m−2)−1
n = 0, i = 1, . . . , n− 1.

Identities (4.1) imply that ẽ
n(m−2)−1
n ∈ Soc(M(Q̃)) = L̃n(m−2). On

the other hand, we have ẽ
n(m−2)−1
n ∈ L̃n(m−2)−1, hence ẽ

n(m−2)−1
n = 0,

which means z
n(m−2)−1
n ∈ V(Q̃). Since Q is linearly equivalent to
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Q̃, it follows that there exists a linear form L ∈ Q1
n such that

Ln(m−2)−1 ∈ V(Q), which yields V(Q) ∩ C 6= 0. We have thus shown
that ∆(Q) = 0 implies V(Q) ∩ C 6= 0.

The opposite implication is obtained by observing that the above ar-
gument is in fact reversible. This concludes the proof of the
lemma. 2

Notice that if Q ∈ Xm
n , then V(Q) is necessarily a codimension

n subspace of Qn(m−2)−1
n . Indeed, by properties (2.3) of the Hilbert

function of the grading {Lj} on M(Q) (see (2.2)), one has

dimC Ln(m−2)−1 = dimC L1 = n,

which means

(4.2) dimC V(Q) = dimCQn(m−2)−1
n − n.

In the following lemma, we show that if one can construct a
(possibly degenerate) form Q ∈ Qmn such that V(Q) ∩ C = 0 and

V(Q) ⊂ Qn(m−2)−1
n is of codimension n, then there is a deformation

Q of Q with ∆(Q) 6= 0 and V(Q) ∩ C = 0. Then Lemma 4.4 implies
that ∆(Q) 6= 0, as asserted in Proposition 4.3.

Lemma 4.5. Assume that for some Q ∈ Qmn one has

(i) dimC V(Q) = dimCQn(m−2)−1
n − n,

(ii) V(Q) ∩ C = 0.

Then there exists Q ∈ Xm
n such that ∆(Q) 6= 0.

Proof: Let Qk be a sequence in Xm
n converging to Q in the Euclidean

topology of Qmn as k → ∞. Since V(Q) ∩ C = 0 by assumption and
dimC V(Qk) = dimC V(Q) for all k by formula (4.2), it follows that
V(Qk) ∩ C = 0 for all sufficiently large k. Hence, by Lemma 4.4, the
associated form of every such Qk has non-vanishing discriminant, and
the lemma is established. 2

Proof of Proposition 4.3: For every pair n,m, we need to produce a
form Q satisfying the assumptions of Lemma 4.5. In fact, we will define

a form Q for which V(Q) =W , where W is the subspace of Qn(m−2)−1
n

spanned by all monomials in z1, . . . , zn of degree n(m − 2) − 1 other

than z
n(m−2)−1
1 , . . . , z

n(m−2)−1
n . Clearly, W is a codimension n subspace

in Qn(m−2)−1
n and W ∩ C = 0.
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Set

Q(z) :=



∑
1≤i<j<k≤n

zizjzk if m = 3,

∑
1≤i<j≤n

(zm−2
i z2

j + z2
i z

m−2
j ) if m ≥ 4.

One immediately observes that V(Q) ⊂ W . To see that V(Q) = W ,
let m1, . . . , mK be the monomial basis in W , where the monomials are

listed with respect to some ordering, with K := dimCQn(m−2)−1
n − n.

For any elements P 1, . . . , P n ∈ Qn(m−2)−m
n we write the expression

P 1Q1 + · · ·+ P nQn as

A1m1 + · · ·+ AKmK ,

where Ai are linear functions of the coefficients p1, . . . , pN of the
forms P 1, . . . , P n listed with respect to some ordering, with

N := n dimCQn(m−2)−m
n . Further, we write A1

...
AK

 = A

 p1

...
pN

 ,

where A is a constant K × N -matrix independent of P 1, . . . , P n. We
also record the inequality K ≤ N , which follows from identity (4.2).
In terms of the matrix A the condition V(Q) = W means that
rank(A) = K. A straightforward albeit tedious calculation, which we
omit because of its length, now yields that A is indeed of maximal rank
thus proving the proposition. 2

Remark 4.6. Proposition 4.3 implies that U := Φ−1
(
X
n(m−2)
n

)
is an open dense subset of Xm

n . Observe also that one always has
n(m − 2) ≥ 3 with the exception of the pair n = 2,m = 3. Hence,
excluding this special case, for every Q ∈ U one can introduce the sec-

ond associated form as (Φ
n(m−2)
n ◦Φm

n )(Q) = Φ
n(m−2)
n (Q) (see (2.6)). It

would be interesting to investigate whether, considering compositions
of k maps ΦM

n for suitable values of M , one can define a kth associated
form, with any k ≥ 3, for every Q in a certain dense open subset of Xm

n .
For example, to introduce a third associated form, one would need to
show that

(Φn(m−2)
n ◦ Φm

n )(U) ∩Xn(n(m−2)−2)
n 6= ∅.

Notice that n(m − 2) > m in all situations except n = 2, m = 4
and n = 3, m = 3, while in the latter two cases we have
n(m− 2) = m. Thus, with the exclusion of these two special cases, the
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degree of the kth associated form of an element of Qmn (provided such
a form could be introduced) would tend to infinity as k →∞.

5. The case of binary forms

In this section, we obtain more specialized results in the case of
binary forms (n = 2). These results yield a simpler proof of Theorem
4.1 as well as motivate a more precise variant of Conjecture 2.4 for
binary forms (see Conjecture 5.6).

Every non-zero binary form can be represented as a product of linear
factors; this property will be extensively used in our arguments below.
Note that in terms of linear factors, for a form Q ∈ Qm2 the condition
∆(Q) 6= 0 means that each of the m factors of Q has multiplicity
one (see, e.g., [O], Theorem 2.39), or, equivalently, that the partial
derivatives Q1, Q2 of Q do not have common factors. Furthermore,
the semi-stability of Q is equivalent to each factor having multiplicity
not exceeding m/2, and the stability of Q is equivalent to each factor
having multiplicity less than m/2 (see, e.g., [Mum], Proposition 4.1 or
[Muk], Proposition 7.9).

5.1. (Semi-)stability of the associated form. Let

Q(z) =
2N∑
j=0

(
2N
j

)
ajz

2N−j
1 zj2

be a binary form of even degree 2N . The catalecticant of Q is defined
as follows:

Cat(Q) := det


a0 a1 . . . aN
a1 a2 . . . aN+1
...

...
. . .

...
aN aN+1 . . . a2N

 .

The catalecticant is a relative invariant of degree N + 1 of forms in
Q2N

2 (see [Ell], §209). It is well-known (and in fact easy to prove) that
Cat(Q) = 0 if and only if the partial derivatives of Q of order N are
linearly dependent in QN2 (see, e.g., [K], Lemma 6.2). Moreover, the
set where the catalecticant vanishes is the closure of the locus of forms
in Q2N

2 expressible as the sum of the (2N)th powers of N linear forms
(see, e.g., [Ell], §208 or [GY], §187).

Notice that for Q ∈ Xm
2 one has Q ∈ Q2(m−2)

2 , so Cat(Q) is well-
defined. Corollary 3.4 for ` = m− 2 now implies the following propo-
sition.

Proposition 5.1. For every Q ∈ Xm
2 one has Cat(Q) 6= 0.
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Remark 5.2. Alternatively, this proposition can be proven directly,
without relying on the material on inverse systems developed in Section
3.1 and, in particular, without appealing to Corollary 3.4.

For any N ≥ 1, define

Y 2N
2 := {Q ∈ Q2N

2 : Cat(Q) 6= 0}.
By Proposition 5.1, the map Φ is a morphism of affine algebraic vari-
eties

Φ: Xm
2 → Y

2(m−2)
2 .

Since Y
2(m−2)

2 ⊂
(
Q2(m−2)

2

)ss
, the associated form Q of every form

Q ∈ Xm
2 is semi-stable. However, not every associated form is sta-

ble. Indeed, a quick computation shows that for Q = zm1 + zm2 the
associated form is

Q =
1

m2(m− 1)2

(
2m− 4

m− 2

)
zm−2

1 zm−2
2 ,

which is clearly not stable. We will now prove that this example in fact
describes the only possibility, up to linear equivalence, for an associated
form not to be stable.

Proposition 5.3. If the associated form Q of a form Q ∈ Xm
2 is not

stable, then Q is linearly equivalent to zm1 + zm2 . In particular, Q is
linearly equivalent to zm−2

1 zm−2
2 .

Proof: If the form Q is not stable, by Proposition 2.1 we can as-
sume, without loss of generality, that Q is divisible by zm−2

1 , that is,
µ0,2m−4(Q) = · · · = µm−3,m−1(Q) = 0 (see (2.5)).

First, we claim

(5.1) em−1
2 = 0.

If m = 3, there is nothing to prove since in this case µ0,2(Q) = 0, so we
may assume m > 3. From the conditions µ0,2m−4(Q) = µ1,2m−5(Q) = 0,
we have

(5.2)

z2m−4
2 =

m−3∑
j=0

zm−j−3
1 zj2(αjQ1 + βjQ2),

z1z
2m−5
2 =

m−3∑
j=0

zm−j−3
1 zj2(γjQ1 + δjQ2)

for some αj, βj, γj, δj ∈ C. Multiplying the first identity in (5.2) by z1,
the second one by z2, and comparing the results, we see

(5.3) P 1Q1 + P 2Q2 = 0,
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where

P 1 :=
m−3∑
j=0

(αjz
m−j−2
1 zj2 − γjz

m−j−3
1 zj+1

2 ),

P 2 :=
m−3∑
j=0

(βjz
m−j−2
1 zj2 − δjz

m−j−3
1 zj+1

2 ).

Since Q1, Q2 ∈ Qm−1
2 do not have common linear factors and P 1,

P 2 lie in Qm−2
2 , identity (5.3) implies P 1 = P 2 = 0. In particular, we

obtain α0 = β0 = 0. Division of the first equation in (5.2) by z2 then
implies

(5.4) z2m−5
2 =

m−4∑
j=0

zm−j−4
1 zj2(αj+1Q1 + βj+1Q2),

hence

(5.5) e2m−5
2 = 0.

If m = 4, identity (5.5) coincides with (5.1), otherwise the condition
µ2,2m−6(Q) = 0 leads to

(5.6) z2
1z

2m−6
2 =

m−3∑
j=0

zm−j−3
1 zj2(γ′jQ1 + δ′jQ2)

for some γ′j, δ
′
j ∈ C. Multiplying identity (5.4) by z2

1 , identity (5.6)
by z2, and comparing the polynomial coefficients at Q1, Q2 as above,
we obtain α1 = β1 = 0. Dividing (5.4) by z2 then implies e2m−6

2 = 0.
Repeating this argument sufficiently many times yields (5.1) as claimed.

Next, write

(5.7)
Q1 = azm−1

2 +R,

Q2 = bzm−1
2 + S,

where a, b ∈ C and R, S are forms in Qm−1
2 not involving the monomial

zm−1
2 . Since em−1

2 = 0, there exist α, β ∈ C with |α| + |β| > 0 such
that αR + βS = 0. If α = 0 then S = 0, hence b 6= 0 and Q is linearly
equivalent to zm1 +zm2 . If β = 0 then R = 0, which is impossible since in
this case Q has a linear factor of multiplicity greater than one. Thus,
we can assume that α 6= 0, β 6= 0, and therefore S = γR for some
γ 6= 0.

Let

R = a1z1z
m−2
2 + · · ·+ am−1z

m−1
1 ,
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with a1, . . . , am−1 ∈ C. Then, integrating each of equations (5.7) and
comparing the results, we see

(5.8) aj =

(
m− 1
j

)
a

γj
, j = 1, . . . ,m− 1.

Now, the first identity in (5.7) and relations (5.8) yield

Q1 = a

(
z1

γ
+ z2

)m−1

.

Therefore, we have a 6= 0 and

Q =
aγ

m

(
z1

γ
+ z2

)m
+ czm2 ,

where c := (b − aγ)/m. Hence c 6= 0 and Q is linearly equivalent to
zm1 + zm2 as required. 2

Proposition 5.3 yields the following fact.

Corollary 5.4. For every Q ∈ Xm
2 the GL(2,C)-orbit of Q is closed

in Y
2(m−2)

2 .

Proof: Firstly, since the orbit of any stable form is closed in the open
set of semi-stable forms, it follows that if Q is stable, its orbit is closed

in
(
Q2(m−2)

2

)ss
, hence in Y

2(m−2)
2 . Secondly, it is straightforward to

observe that the orbit of zm−2
1 zm−2

2 is closed in
(
Q2(m−2)

2

)ss
as well. 2

5.2. Alternative proof of Theorem 4.1 for binary forms and a
refined conjecture. Corollary 5.4 leads to a more explicit proof of
Theorem 4.1 for the case n = 2, which avoids the use of Proposition
4.3. Although the proof still relies on the sufficiency implication of
Theorem 3.1, we note that for binary forms this implication can be
obtained directly, without utilizing inverse systems.

Alternative Proof of Theorem 4.1 for n = 2: Consider the affine
good quotients

Z1 := Xm
2 //GL(2,C),

Z2 := Y
2(m−2)

2 //GL(2,C),

and let π1 : Xm
2 → Z1, π2 : Y

2(m−2)
2 → Z2 be the corresponding GL(2,C)-

invariant morphisms. As in the proof of Proposition 4.2, there exists a
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morphism φ : Z1 → Z2 such that the diagram

Xm
2

Φ //

π1
��

Y
2(m−2)

2

π2
��

Z1
φ // Z2

commutes. Now, Corollary 5.4 and Theorem 3.1 together with property
(P2) of good quotients imply that the map φ is injective. The rest of
the argument proceeds as in the proof of Proposition 4.2. 2

Remark 5.5. While the above argument does not utilize Proposition
4.3, this proposition is still of independent interest (see Remark 4.6).
In the case of binary forms, one can give a more streamlined proof of
this statement compared to the one presented in Section 4.2. Indeed,
one can observe directly from Lemma 4.4 that the discriminant of the
associated form of

Q0(z) :=

{
z4

1 + z2
1z

2
2 + z4

2 if m = 4,

zm−2
1 z2 + z1z

m−1
2 if m 6= 4

does not vanish. In particular, Lemma 4.5 is not required for obtaining
Proposition 4.3 in the case n = 2.

The proof of Theorem 4.1 given in this section motivates a more
detailed variant of Conjecture 2.4 in the case of binary forms. In what
follows, Im2 := C[Xm

2 ]GL(2,C) is the algebra of GL(2,C)-invariant regular
functions on Xm

2 (see (2.13)).

Conjecture 5.6. For every I ∈ Im2 there exists an invariant regular

function I on Y
2(m−2)

2 satisfying I ◦ Φ = I on Xm
2 .

We claim that Conjecture 5.6 is equivalent to the statement that
the morphism φ : Z1 → Z2 in the above proof is a closed immersion.
Indeed, the conjecture is the statement that every function I ∈ Im2
extends, under the morphism Φ, to a function in C[Y

2(m−2)
2 ]GL(2,C).

On the other hand, φ : Z1 → Z2 is a closed immersion if and only
if φ∗ : C[Z2] → C[Z1] is surjective. The claim now follows from the
identifications

C[Z1] ' Im2 ,

C[Z2] ' C[Y
2(m−2)

2 ]GL(2,C),

which are a consequence of property (P1) of good quotients.
Recall that the alternative proof of Theorem 4.1 given above estab-

lishes the injectivity of the morphism φ : Z1 → Z2. Therefore, the
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condition for φ to be a closed immersion would follow from Zariski’s
Main Theorem provided one could show that φ(Z1) is a closed normal
subvariety of Z2.

Further, we observe that there are identifications

Im2 ' ((Am2 )∆)0,

C[Y
2(m−2)

2 ]GL(2,C) ' ((A2(m−2)
2 )Cat)0,

where we recall from (2.12) that Am2 := C[Qm2 ]SL(2,C). Therefore, Con-
jecture 5.6 can be also formulated by requiring that every absolute
classical invariant of the form

(5.9) I =
I

∆p

on Qm2 for some I ∈ C[Qm2 ] and p ≥ 0 extends, under the morphism Φ,
to an absolute classical invariant of the form

(5.10) I =
I

Catq

on Q2(m−2)
2 for some I ∈ C[Q2(m−2)

2 ] and q ≥ 0.
Finally, we remark that results of article [EI] confirm Conjecture 5.6

for binary forms of degrees 3 ≤ m ≤ 6 (see also [Ea]). Indeed, the
computations performed in [EI] explicitly verify that every absolute
classical invariant I as in (5.9) extends under Φ to an absolute classical
invariant I as in (5.10).
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325.
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