
LOCAL PROPERTIES OF GOOD MODULI SPACES

JAROD ALPER

ABSTRACT. We study the local properties of Artin stacks and their good moduli spaces,
if they exist. We show that near closed points with linearly reductive stabilizer, Artin
stacks formally locally admit good moduli spaces. In particular, the geometric invariant
theory is developed for actions of linearly reductive group schemes on formal affine
schemes. We also give conditions for when the existence of good moduli spaces can be
deduced from the existence of étale charts admitting good moduli spaces.

1. INTRODUCTION

We address the question of whether good moduli spaces for an Artin stack can be
constructed “locally.” The main results of this paper are: (1) good moduli spaces ex-
ist formally locally around points with linearly reductive stabilizer and (2) sufficient
conditions are given for the Zariski-local existence of good moduli spaces given the
étale-local existence of good moduli spaces. We envision that these results may be of
use to construct moduli schemes of Artin stacks without the classical use of geometric
invariant theory and semi-stability computations.

The notion of a good moduli space was introduced in [1] to assign a scheme or algebraic
space to Artin stacks with nice geometric properties reminiscent of Mumford’s good
GIT quotients. While good moduli spaces cannot be expected to distinguish between
all points of the stack, they do parameterize points up to orbit closure equivalence. See
Section 2 for the precise definition of a good moduli space and for a summary of its
properties.

While the paper [1] systematically develops the properties of good moduli spaces,
the existence was only proved in certain cases. For instance, if X = [SpecA/G] is a
quotient stack of an affine by a linearly reductive group, then X → SpecAG is a good
moduli space ([1, Theorem 13.2]). Additionally, for any quasi-compact Artin stack X
with a line bundle L, there is a naturally defined semi-stable locus X ss

L and stable locus
X s
L such that φ : X ss

L → Y is a good moduli space where Y is a quasi-projective scheme,
and there is an open subscheme V ⊆ Y such that φ−1(V ) = X s

L and φ|X s
L

is a coarse
moduli space ([1, Theorem 11.14]).
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One might dream that there is some topological criterion guaranteeing existence of
a good moduli space in the same spirit of the finite inertia hypothesis guaranteeing the
existence of a coarse moduli space. One might pursue the following approach:

(1) Show that good moduli spaces exist locally around closed points.
(2) Show that these patches glue to form a global good moduli space.

We are tempted to conjecture that if x ∈ |X | is a closed point of an Artin stack with
linearly reductive stabilizer, then there exists an open substack U ⊆ X containing x

such that U admits a good moduli space. However, Example 2.6 shows that this is
too much to hope for, and it is unclear what the additional requirement should be to
guarantee local existence of a good moduli space.

While we cannot establish the existence of good moduli spaces Zariski-locally or
étale-locally, we show that formally locally good moduli spaces exist around closed
points ξ ∈ |X |with linearly reductive stabilizer. Denote byXi the nilpotent thickenings
of the induced closed immersion Gξ ↪→ X . Section 3 is devoted to making precise the
following statement: if X̂ is the “completion of X at ξ”, then X̂ → Spf lim

←−
Γ(Xi,OXi) is

a good moduli space.
We prove in Section 3 that if there exists a good moduli space, then this formally

local description is correct. Precisely, we prove the following:

Theorem 1.1. Suppose X is an Artin stack of finite type over Spec k where k is a field and
φ : X → Y is a good moduli space. Let x : Spec k → X be a closed point with affine stabilizer
Gx. Let Xi be the nilpotent thickenings of the induced closed immersion BGx ↪→ X . There are
isomorphisms Xi ∼= [SpecAi/Gx] which induces an action of Gx on Spf A where A = lim

←−
Ai.

Let y = φ(x). There are isomorphisms of topological rings

ÔY,y //

$$

lim
←−

(AGxi )

��

AGx .

In particular, if the stabilizerGx is smooth, the formal local ring ÔY,y at a closed point
y ∈ Y of a good moduli space is simply the invariants of the induced action of Gx on a
miniversal deformation space Spf A of x ∈ |X |.

We also establish that the theorem on formal functions holds for good moduli spaces;
see Theorem 3.8. This provides further evidence that good moduli spaces behave very
similar to proper morphisms: good moduli spaces are universally closed and of finite
type, preserve coherence under push forward and satisfy the formal functions theorem
but are not necessarily separated.

In Section 4, we develop the geometric invariant theory for quotients of formal affine
schemes by linearly reductive group schemes.
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A sufficiently powerful structure theorem for Artin stacks giving étale charts by quo-
tient stacks could imply existence of good moduli spaces Zariski-locally. We recall the
conjecture from [2]:

Conjecture 1.2. If X is an Artin stack of finite type over Spec k and x ∈ X (k) has linearly
reductive stabilizer, then there exist an algebraic space X over Spec k with an action of the
stabilizer Gx, a k-point x̃ ∈ X , and an étale morphism [X/Gx]→ X inducing an isomorphism
Gx̃

∼→ Gx.

If the conjecture is true for x ∈ X (k) with the additional requirement that X is affine,
then there is an induced diagram

W = [X/Gx]

ϕ

��

f
// X

W ,

where ϕ is a good moduli space, f is an étale, representable morphism, and there is a
point w ∈ W(k) with f(w) = x inducing an isomorphism AutW(k)(w) → AutX (k)(x).
This is not enough to prove directly that there exists a good moduli space Zariski-
locally (see Remark 5.6). This leads to the natural question of what additional hy-
potheses need to be placed on a morphism f : W → X , where W admits a good
moduli space, in order to ensure that X admits a good moduli space. We prove the
following theorem in Section 5 (see Section 2 for definitions):

Theorem 1.3. Let X be an Artin stack locally of finite type over an excellent base S. Suppose
there exists an étale, surjective, pointwise stabilizer preserving and universally weakly satu-
rated morphism f : X1 → X such that there exist a good moduli space φ1 : X1 → Y1. Then
there exists a good moduli space φ : X → Y inducing a cartesian diagram

X1

f
//

φ1
��

X
φ
��

Y1
// Y.

We offer an application of this theorem proving that the existence of a good moduli
space only depends on the reduced structure (see Corollary 5.7).

This theorem may be of use in practice to prove existence of good moduli spaces for
certain Artin stacks which can be shown to admit étale presentations as quotient stacks.
Conversely, if we assume that there exists a good moduli spaceX → Y , then one might
hope to show the local quotient conjecture is true by showing that étale locally on Y ,
X is a quotient stack by the stabilizer.
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2. NOTATION

We will assume schemes and algebraic spaces to be quasi-separated. We will work
over a fixed base scheme S. An Artin stack over S, in this paper, will have a quasi-
compact and separated diagonal.

Good moduli spaces. We recall the following two definitions and their essential prop-
erties from [1].

Definition 2.1. ([1, Definition 3.1]) A morphism f : X → Y of Artin stacks is cohomo-
logically affine if f is quasi-compact and the push-forward functor on quasi-coherent
sheaves

f∗ : QCoh(X ) −→ QCoh(Y)

is exact. We say that an Artin stack X is cohomologically affine if the morphism X →
SpecZ is cohomologically affine.

If f : X → Y is a representable morphism of Artin stacks where Y has quasi-affine
diagonal, then f is cohomologically affine if and only if f is affine. Cohomologi-
cally affine morphisms are stable under composition and base change (if the target
has quasi-affine diagonal) and are local on the target under faithfully flat morphisms.
The above and further properties appear in [1, Section 3].

Definition 2.2. ([1, Definition 4.1]) A morphism φ : X → Y , with X an Artin stack and
Y an algebraic space, is a good moduli space if:

(i) φ is cohomologically affine.
(ii) The natural map OY

∼→ φ∗OX is an isomorphism of sheaves.

Remark 2.3. If X is a cohomologically affine Artin stack, then the natural morphism
X → Spec Γ(X ,OX ) is a good moduli space.

If φ : X → Y is a good moduli space, then φ is surjective, universally closed, uni-
versally submersive, and has geometrically connected fibers [1, Theorem 4.16]. If X
is locally noetherian, then φ : X → Y is universal for maps to algebraic spaces [1,
Theorem 6.6]. They are stable under arbitrary base change on Y and are local in the
fpqc topology on Y [1, Proposition 4.7]. Furthermore, they satisfy the strong geo-
metric property that if Z1,Z2 ⊆ X are closed substacks, then scheme-theoretically
imZ1∩ imZ2 = im(Z1∩Z2) [1, Theorem 4.16(iii)]. This implies that for an algebraically
closed OS-field k, there is a bijection between isomorphism classes of objects in X (k)

up to closure equivalence and k-valued points of Y (i.e., for points x1, x2 : Spec k → X ,
φ(x1) = φ(x2) if and only if {x1} ∩ {x2} 6= ∅ in X ×S k). Furthermore, we have the
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following generalization of Hilbert’s 14th Problem: if S is an excellent scheme and X
is of finite type over S, then Y is of finite type over S [1, Theorem 4.16(xi)].

Stabilizer preserving morphisms. If X is an Artin stack over S, recall that the inertia
stack is defined as the fiber product

IX //

��

X

∆
��

X ∆ // X ×S X ,

where ∆ : X → X ×S X is the diagonal. We quickly recall the following definition
introduced in [2]:

Definition 2.4. Let f : X → Y be a morphism of Artin stacks. We define:

(i) f is stabilizer preserving if the induced X -morphism ψ : IX → IY ×Y X is an iso-
morphism.

(ii) For ξ ∈ |X |, f is stabilizer preserving at ξ if for a (equivalently any) geometric point
x : Spec k → X representing ξ, the fiber ψx : AutX (k)(x) → AutY(k)(f(x)) is an
isomorphism of group schemes over k.

(iii) f is pointwise stabilizer preserving if f is stabilizer preserving at ξ for all ξ ∈ |X |.

Remark 2.5. Any morphism of algebraic spaces is stabilizer preserving and any point-
wise stabilizer preserving morphism is representable. It is easy to see that both prop-
erties are stable under composition and base change. While a stabilizer preserving
morphism is clearly pointwise stabilizer preserving, the converse is not true.

Example 2.6. The following example shows that it is too much to hope for that every
Artin stack Zariski-locally admits a good moduli space around a closed point with
linearly reductive stabilizer. Let X be the non-separated plane attained by gluing two
planes A2 = Spec k[x, y] along the open set {x 6= 0}. The action of Z2 on Spec k[x, y]x
given by (x, y) 7→ (x,−y) extends to an action of Z2 on X by swapping and flipping
the axis. Then X = [X/Z2] is a non-separated Deligne-Mumford stack. Rydh shows in
[7, Example 7.15] that there is no neighborhood of the origin of this stack that admits a
morphism to an algebraic space which is universal for maps to schemes. In particular,
there cannot exist a neighborhood of the origin which admits a good moduli space.

Weakly saturated morphisms. We also recall the notion of a weakly saturated mor-
phism which was introduced in [2]. This notion is an essential ingredient in determin-
ing when good moduli spaces can be glued étale locally (see Theorem 1.3).

Definition 2.7. A morphism f : X → Y of Artin stacks over an algebraic space S is
weakly saturated if for every geometric point x : Spec k → X with x ∈ |X ×S k| closed,
the image fs(x) ∈ |Y ×S k| is closed. A morphism f : X → Y is universally weakly
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saturated if for every morphism of Artin stacks Y ′ → Y , X ×Y Y ′ → Y ′ is weakly
saturated.

Remark 2.8. Although the above definition seems to depend on the base S, it is in fact
independent: if S → S ′ is any morphism of algebraic spaces then f is weakly saturated
over S if and only if f is weakly saturated over S ′. Any morphism of algebraic spaces
is universally weakly saturated. If f : X → Y is a morphism of Artin stacks of finite type
over S, then f is weakly saturated if and only if for every geometric point s : Spec k →
S, fs maps closed points to closed points. If f : X → Y is a morphism of Artin stacks of
finite type over Spec k, then f is weakly saturated if and only if f maps closed points
to closed points.

Remark 2.9. The notion of weakly saturated is not stable under base change. Consider
the two different open substacks U1,U2 ⊆ [P1/Gm] isomorphic to [A1/Gm] over Spec k.
Then

U1 t U2 t Spec k t Spec k //

��

U1 t U2

��
U1 t U2

// [P1/Gm]

is 2-cartesian and the induced morphisms Spec k → Ui are open immersions which are
not weakly saturated. This example shows that even étale, stabilizer preserving, sur-
jective, weakly saturated morphisms may not be stable under base change by them-
selves which indicates that the universally weakly saturated hypothesis in Theorem 1.3 is
necessary.

3. GOOD MODULI SPACES FOR FORMAL SCHEMES

In this section, we show that the theory of good moduli spaces carries over to the
formal setting. We will avoid using formal Artin stacks and make all statements and
arguments using smooth, adic pre-equivalence relations. We will also only consider
the case where the good formal moduli spaces are formal schemes which suffices for
our applications. The theory of formal algebraic spaces has only been developed in
the separated and locally noetherian case. In Theorem 3.1, the noetherianness of the
quotient should follow from the noetherian property of U and the properties of good
moduli spaces rather than being implicitly assumed. Our main interest is in the case
where the groupoid is induced from the inclusion of a residual gerbe of a closed point
Gξ ↪→ X so that, in particular, the Yi’s (to be defined below) are Artinian (dimension 0
noetherian schemes) and the formal good moduli space Y = lim

−→
Yi is a formal affine

scheme whose underlying topological space is a point.

3.1. Setup. We begin by setting up the notation and making elementary remarks.
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3.1.1. A smooth, adic formal S-groupoid consists of source and target morphisms s, t :

R ⇒ U of locally noetherian, separated formal algebraic spaces which are smooth and
adic, an identity morphism e : U → R, an inverse i : R → R, and a composition
c : R ×s,U,t R → R satisfying the usual relations. If J is an ideal of definition of U,
then I := s∗J is an ideal of definition of R (since s is adic), and we set Un and Rn to
be the closed sub-algebraic spaces defined by Jn+1 and In+1, respectively. There are
induced smooth S-groupoids sn, tn : Rn ⇒ Un with identity en : Un → Rn, an inverse
in : Rn → Rn, and a composition cn : Rn ×sn,Un,tn Rn → Rn. Set Xn = [Un/Rn]. If X has
affine diagonal, then by [1, Prop 3.9(iv)] Xn is cohomologically affine if and only if X0

is.
Let Xn = [Un/Rn] and suppose φn : Xn → Yn is a good moduli space where Yn is a

scheme for each n. Let qn : Un → Yn be the composite of Un → Xn with φn : Xn → Yn.
Since each (φn)∗ is exact, the induced map Γ(Yn+1,OYn+1) → Γ(Yn,OYn) is surjective so
there are closed immersions Yn → Yn+1. The closed immersion X0 ↪→ Xn is defined by
a coherent sheaf of ideals I on Xn such that In+1 = 0. The closed immersion Y0 ↪→ Yn
is defined by φ∗I, which is nilpotent since (φ∗I)n+1 ⊆ φ∗(In+1) = 0. It follows from
[3, I.10.6.3] that there exists a formal scheme Y = lim

−→
Yi and that there is an induced

morphism q : U→ Y. We have the diagram:

(3.1) R0
//

�� ��

R1
//

�� ��

· · · // R

�� ��
U0

//

��

U1
//

��

· · · // U

q

��

X0
//

��

X1
//

��

· · ·

Y0
// Y1

// · · · // Y,

where all appropriate squares are 2-commutative and the appropriate squares in the
top and middle rows are 2-cartesian. Note that the squares in the bottom row are not
necessary cartesian. There should exist a geometric object X̂ (i.e., a formal Artin stack)
filling in the above diagram for which q factors through.

We note that the formal scheme Y and the morphism q : U → Y do not depend on
the choice of the ideal of definition.

We do not know a priori that Y is locally noetherian. In particular, if each Yi =

SpecAi is an affine scheme, it is not immediate that the topological ring lim
←−

Ai is either
adic or noetherian.

3.1.2. Recall that q denotes the morphism q : U → Y. There is a natural map OY →
(q∗OU)R, where (q∗OU)R denotes the sheaf of topological rings on Y which assigns to
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an open V ⊆ Y, the equalizer

OU(q−1(V )) ⇒ OR((q ◦ t)−1(V ));

clearly OY(V )→ OU(q−1(V )) factors through this equalizer as q ◦ s = q ◦ t.

3.1.3. More generally, if F is a coherent OU-module, an R-action on F is an isomor-
phism α : s∗F → t∗F satisfying the usual cocycle condition on R ×t,U,s R. One checks
that the category of coherent OU-modules with R-action is abelian.

If Fn denotes the pullback of F to Un, then Fn inherits a Rn-action and therefore
descends to a coherent sheaf Fn of OXn-modules. We will denote by (q∗F)R the sheaf
of OY-modules defined by the equalizer

q∗F
t∗//

α◦s∗
// (q ◦ t)∗t∗F.

If there were a formal stack X̂ , then (q∗F)R would simply be the push forward un-
der X̂ → Y of the descended sheaf of OX̂ -modules F̂. We also write Γ(U,F)R =

Γ(U, (q∗F)R).
It is not obvious that (q∗F)R is coherent but we will show in Theorem 3.1 that this

is true if Y0 is Artinian. The morphisms (q∗F)R → ((qi)∗Fi)
Ri = (φi)∗Fi induces a

morphism of OY-modules

(3.2) (q∗F)R −→ lim
←−

(φi)∗Fi.

3.1.4. If I is a coherent sheaf of ideals in OU, we say that I is R-invariant if s∗J = t∗J.
The sheaf I therefore inherits an R-action. We say that a closed sub-algebraic space
Z ⊆ U is R-invariant if it is defined by an invariant sheaf of ideals.

3.1.5. For any adic morphism of formal schemes Y′ → Y, by taking fiber products,
there is an induced diagram as in diagram (3.1). There are source and target morphisms
s′, t′ : R′ ⇒ U′, an identity morphism e′ : U′ → R′, an inverse i′ : R′ → R′ and a
composition c′ : R′ ×s′,U′,t′ R

′ → R′ satisfying the usual relations. Suppose further that
Y′, Y, and U′ = Y′ ×Y U are locally noetherian. Then (s′, t′ : R′ ⇒ U′, e′, i′) indeed
defines a smooth, adic formal S-groupoid. Because good moduli spaces are stable
under arbitrary base change, there are good moduli spaces φ′i : X ′i → Y ′i . Furthermore,
the induced morphisms lim

−→
U ′i → U′, lim

−→
R′i → R′, and lim

−→
Y ′i → Y′ are isomorphisms.

Formal good moduli spaces.

Theorem 3.1. Assume the notation above.

(i) The natural map OY → (q∗OU)R is an isomorphism of sheaves of topological rings.
(ii) The functor from coherent sheaves on U with R-actions to sheaves on Y given by F 7→

(q∗F)R is exact. Furthermore, the morphism (q∗F)R → lim
←−

(φi)∗Fi is an isomorphism of
topological OY-modules.
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(iii) q is surjective.
(iv) If Z ⊆ U is a closed, R-invariant formal subscheme, then q(Z) is closed,
(v) If Z1,Z2 ⊆ U are closed, R-invariant formal subschemes, then set-theoretically

q(Z1) ∩ q(Z2) = q(Z1 ∩ Z2).

(vi) q is universal for R-invariant maps to formal schemes. That is, given a morphism ψ :

U → W where W is a formal scheme such that s ◦ ψ = t ◦ ψ, then there exists a unique
morphism χ : Y→W such that χ ◦ q = ψ.

(vii) If Y = Spf A is an affine formal scheme, then A is noetherian.

Suppose furthermore that Y0 is the spectrum of a local Artinian ring.

(viii) Y is a locally noetherian formal scheme. In particular, if Y = Spf A and m = ker(A→
A0), then A is an m-adic noetherian ring.

(ix) If F is a coherent sheaf of U with R-action, then (q∗F)R is a coherent OY-module.
(x) If I and J are two R-invariant coherent ideals in OU, then the natural map

(q∗I)R + (q∗J)R −→ (q∗(I + J))R

is an isomorphism. If Z1 and Z2 are R-invariant formal closed subschemes, then scheme-
theoretically

imZ1 ∩ imZ2 = im(Z1 ∩ Z2),

where imZ denotes the scheme-theoretic image of Z under q : U → Y and is defined by
the coherent sheaf of ideals ker(OY → q∗OZ).

Proof. For (i), for each n we have an exact sequence

OYn −→ (qn)∗OUn ⇒ (qn ◦ tn)∗ORn .

By taking inverse limits, we get that OY = lim
←−
OYn is naturally identified with the

equalizer of q∗OU ⇒ (q ◦ t)∗OR, which is the definition of (q∗OU)R.
For (ii), we first note that the above argument generalizes to show that the morphism

(3.2) is an isomorphism of topological OY-modules. Indeed, for each n we have an
exact sequence

(φn)∗Fn −→ (qn)∗Fn ⇒ (qn ◦ tn)∗t
∗
nFn,

and by taking inverse limits, we get that lim
←−

(φn)∗Fn is identified with the equalizer

q∗F ⇒ (q ◦ t)∗t∗F. The functor F 7→ (q∗F)R is clearly left exact. Consider a surjection
F � G of coherent OU-modules with R-action, which induces surjections Fn � Gn of
coherent OUn-modules with Rn-action and Fn � Gn of coherent OXn-modules. Since
(φn)∗ is exact, we have that λn : (φn)∗Fn � (φn)∗Gn is surjective. Furthermore, the
inverse system (ker(λn)) is Mittag-Leffler so it follows that

lim
←−

(φn)∗Fn � lim
←−

(φn)∗Gn
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is surjective and is identified with (q∗F)R � (q∗G)R.
Since properties (iii), (iv), and (v) are topological, they follow directly from the cor-

responding property for good moduli spaces ([1, Theorem 4.16(i),(ii) and (iii)]).
For (vi), the argument of [5, Proposition 0.1 and Remark (5) on p. 8] adapts to this

setting as in [1, Theorem 4.15(vi)].
For (vii), let I ⊆ A be an ideal and write I =

⋃
α Iα as a directed union of its finitely

generated subideals. Then for each α, there exists an integer nα and an exact sequence

A⊕nα → A→ A/Iα → 0.

Set Iα = q∗Ĩα · OU ⊆ OU, which is a coherent sheaf of ideals. Pulling back the above
sequence via q yields

O⊕nαU → OU → OU/Iα → 0.

Since Γ(U,OU)R ∼= A, by applying the exact functor Γ(U,−)R to the above sequence, we
obtain an isomorphism Iα = Γ(U, Iα)R. As U is noetherian, there is a coherent sheaf of
ideals I ⊆ OU such that for α � 0, we have I = Iα. Therefore, for α � 0, we have
Iα = Γ(U, q∗I)R which implies that I is finitely generated.

For (viii) and (ix), we may assume that Y = Spf A where A is a noetherian ring by
(vii). We must show that A is an m-adic ring. Let In = ker(A → An). Clearly, In ⊇ mn.
Since A/mn is Artinian, the image of the descending chain I0 + mn ⊇ I1 + mn ⊇ · · · of
ideals in A/mn terminates. Applying Krull’s intersection theorem on U ×Y SpecA/mn

yields that
⋂
k(Ik + mn) = mn. Therefore, there exists an integer k such that mn ⊇ Ik.

This implies that In0 is open so that A is I0-adic. Similarly, M = Γ(U,F)R = lim
←−

Γ(Xi,Fi)
is Hausdorff and complete with respect to the m-adic topology. It follows from [3,
0.7.2.9] that M is a finitely generated A-module.

For (x), we have the identifications (q∗I)R = lim
←−

(φn)∗In, (q∗J)R = lim
←−

(φn)∗Jn and

q∗(I + J)R = lim
←−

(φn)∗(In + Jn) where In and Jn are the corresponding sheaf of ideals

on Xn. For each n, by [1, Lemma 4.9], the inclusion (φn)∗In + (φn)∗Jn → (φn)∗(In +Jn)

is an isomorphism. By taking inverse limits,

lim
←−

((φn)∗In + (φn)∗Jn) −→ lim
←−

(φn)∗(In + Jn)

is an isomorphism. Since

lim
←−

(φn)∗In + lim
←−

(φn)∗Jn −→ lim
←−

((φn)∗In + (φn)∗Jn)

is also an isomorphism, we have that (q∗I)R+(q∗J)R → (q∗(I+J))R is an isomorphism.
The final statement follows from the identification of the coherent sheaf of ideals (q∗I)R

with ker(OY → q∗OZ). �

Remark 3.2. As in [1], we contend that properties (i) and (ii) should in fact define the
notion of a formal good moduli space and these two properties alone should imply the



LOCAL PROPERTIES OF GOOD MODULI SPACES 11

others. However, this theory would best be developed in the language of formal stacks
which we are avoiding in this paper.

Groupoids induced from closed substacks. Let X be a noetherian Artin stack and Z
be a closed substack which is cohomologically affine (i.e., Z → SpecZ is cohomolog-
ically affine). Then Z together with a presentation U → X induces a smooth, adic
formal S-groupoid and a diagram as in (3.1). Let X0 = Z and Xn be the closed sub-
stack corresponding to the n-th nilpotent thickening of X0 ⊆ Xn. Set Ui = U ×X Xi and
Ri = R×X Xi. Then the smooth S-groupoids Ri ⇒ Ui induces the smooth, adic formal
S-groupoid R ⇒ U where U = lim

−→
Ui and R = lim

−→
Ri (with the source, target, identity,

inverse and composition morphisms defined in the obvious way).
Since X0 is cohomologically affine, its nilpotent thickenings Xn are also cohomolog-

ically affine. Therefore, there are good moduli spaces φn : Xn → Yn. If Y = lim
−→

Yi =

Spec lim
←−

Γ(Xn,OXn), there is an induced R-invariant morphism q : U → Y and we can
apply the above theorem to conclude the following:

Corollary 3.3. Suppose Z is a closed, cohomologically affine substack of a noetherian Artin
stack X such that Γ(Z,OZ) is a local Artinian ring. Then with the notation above, there is an
induced morphism q : U→ Y satisfying the properties (i) through (x) in Theorem 3.1. �

The corollary above implies that there is an isomorphism of topological rings

lim
←−

Γ(Xn,OXn) −→ (lim
←−

Γ(Un,OUn))R.

If there exists a good moduli space X → Y , it is natural to compare these topological
rings with the complete local ring induced by the image of Z .

Proposition 3.4. Suppose X is a locally noetherian Artin stack admitting a good moduli space
φ : X → Y and Z ⊆ X is a closed substack defined by a sheaf of ideals I. Let Xn be the
nilpotent thickenings of Z defined by In+1. If Z ⊆ X is cohomologically affine and Γ(Z,OZ)

is local Artinian, then the image y ∈ |Y | of Z is a closed point and the induced morphism

ÔY,y −→ lim
←−

Γ(Xn,OXn)

is an isomorphism, where ÔY,y = lim
←−

Γ(Y,OY /J n) and J defines the closed immersion
Spec k(y) ↪→ Y .

Proof. We have that φ∗I ⊆ J and lim
←−

Γ(Y,OY /(φ∗I)n) → ÔY,y is an isomorphism. We

also have the identification lim
←−

Γ(Xn,OXn) = lim
←−

Γ(Y, φ∗(In)). There is an inclusion

(φ∗I)n ⊆ φ∗(In). The scheme Yn defined by (φ∗I)n is the spectrum of an artinian ring.
Therefore, the descending chain of sheaves of ideals φ∗(I)+(φ∗I)n ⊇ φ∗(I2)+(φ∗I)n ⊇
· · · on Yn terminates. Applying Krull’s intersection theorem on X ×Y Yn implies that
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k(φ∗(Ik) + (φ∗I)n) = (φ∗I)n. Indeed, if J ⊆ OX×Y Yn defines Z , then the OX×Y Yn-

module
⋂
k J k does not contain the unique closed point inZ and therefore this module

is 0. It follows that
⋂
k(φn)∗J k = 0, where φn : X ×Y Yn → Yn. Thus, for each n, there

exists an N such that φ∗(IN) ⊆ (φ∗I)n. �

Local structure around closed points with linearly reductive stabilizer. We apply the
results above to the case in which we are most interested: X is a noetherian Artin stack
and ξ ∈ |X | is a closed point with linearly reductive stabilizer. Let Gξ be the residual
gerbe of ξ (see [4, Section 11]). There is a closed immersion Gξ ↪→ X which, as in (3.1),
induces a smooth, adic formal S-groupoid R ⇒ U.

Since ξ ∈ |X | has linearly reductive stabilizer (see [1, Definition 12.12]), Gξ is co-
homologically affine and φ0 : Gξ → Spec k(ξ) is a good moduli space. The nilpotent
thickenings also admit good moduli spaces φn : Xn → Yn and there is an induced
morphism q : U→ Y.

Corollary 3.5. Suppose ξ ∈ |X | is a closed point with linearly reductive stabilizer. Then with
the above notation, there is an induced morphism q : U → Y satisfying the properties (i)
through (x) in Theorem 3.1. �

In particular, Corollary 3.5 implies that there is an isomorphism of topological rings
lim
←−

Γ(Xn,OXn) → (lim
←−

Γ(Un,OUn))R. There may not exist a good moduli space for X
but Theorem 1.1 establishes that we do in fact know the local structure of the good
moduli space if it exists.

Proof of Theorem 1.1. Note that the stabilizer Gx is linearly reductive since x ∈ |X | is a
closed point. The existence of quotient stack presentations Xi ∼= [SpecAi/Gx] follows
from [2, Theorem 1]. The theorem then follows from Proposition 3.4 and Corollary
3.5. �

Remark 3.6. With the notation of Theorem 1.1, if x ∈ X (k) is not a closed point, then
not much can be said about the local structure of Y around φ(x); even the dimensions
of the good moduli spaces may vary as one varies open substacks containing x. For
instance, consider Gm×Gm acting on A4 via (t, s) · (w, x, y, z) = (tw, tx, sy, sz). Let X =

[A4/Gm×Gm] and x = (1, 1, 1, 1) ∈ X . Let U be the open locus where (w, x) 6= (0, 0) and
V ⊆ U be the sub-locus where (y, z) 6= (0, 0). Then we have a commutative diagram of
good moduli spaces of open substacks containing x

V

��

// U

��

// X

��
P1 × P1 // P1 // Spec k.
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The theorem on formal functions. LetX be a noetherian Artin stack and let φ : X → Y

be a good moduli space. Let Y0 ⊆ Y be a closed subscheme defined by a sheaf of ideals
J and set X0 := φ−1(Y ′) ⊆ |X | which is defined by I := φ∗J · OX . Let Yk be the
k-th nilpotent thickening of Y0 defined by J k+1 and Xk = X ×Y Yk the k-th nilpotent
thickening of X0.

If F is a coherent sheaf of OX -modules, set Fk = F/Ik+1F . For a coherent sheaf G of
OY -modules, let Ĝ := lim

←−
G/J k+1G

Remark 3.7. If we let U → X be a presentation, then as above there is an induced
smooth, adic formal S-groupoid R ⇒ U. Let Y = lim

−→
Yn and let q : U → Y be the

induced morphism. A coherent OX -module F induces a coherent OU-module F with
an R-action. As we saw in Theorem 3.1, there is an isomorphism of topological OY-
modules

(q∗F)R −→ lim
←−

φ∗Fk.

Since the functor F 7→ F is exact and by Theorem 3.1 the functor F 7→ (q∗F)R is exact, it
follows that the functor F 7→ lim

←−
φ∗Fk is exact.

Theorem 3.8. Let X be a noetherian Artin stack with affine diagonal, φ : X → Y a good
moduli space and Y0 ⊆ Y a closed sub-algebraic space. If F is a coherent OX -module, for each
n ≥ 0, the natural morphism

̂Rnφ∗(F) −→ lim
←−

Rnφ∗(Fk)

is an isomorphism.

Proof. We may assume Y is a scheme. Because φ∗ is exact and X has affine diagonal,
the case of positive n follows from [1, Rmk. 3.5]. Therefore, we must only show that

φ̂∗F −→ lim
←−

φ∗Fk

is an isomorphism. Define K and L by the exact sequence

0 −→ K −→ φ∗φ∗F −→ F −→ L −→ 0.

Since φ∗ and completion are exact functors and, by the above remark, F 7→ lim
←−

φ∗Fk is
exact, we have a commutative diagram

0 // φ̂∗K //

��

̂φ∗φ∗φ∗F //

��

φ̂∗F //

��

φ̂∗L //

��

0

0 // lim
←−

φ∗Kk // lim
←−

φ∗(φ
∗φ∗F)k // lim

←−
φ∗Fk // lim

←−
φ∗Lk // 0

with both rows exact. We note that φ∗K = φ∗L = 0 and since φ∗K � φ∗Kk and φ∗L �

φ∗Lk are surjective, it follows that lim
←−

φ∗Kk = lim
←−

φ∗Lk = 0. Therefore, it suffices to
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prove the theorem in the case that F = φ∗G is the pullback of a coherent sheaf G on Y .
In this case, φ̂∗F = Ĝ and φ∗Fk = G/Ik+1G, and the statement is clear. �

By applying the above theorem when Y0 is a point and Y is affine, we obtain the
following corollary.

Corollary 3.9. Let X be a noetherian Artin stack with affine diagonal, φ : X → Y a good
moduli space with Y affine and y ∈ Y a closed point. If F is a coherent OX -module, for each
n ≥ 0, the natural morphism

̂Hn(X ,F) −→ lim
←−

Hn(Xk,Fk)

is an isomorphism. �

4. GEOMETRIC INVARIANT THEORY FOR FORMAL SCHEMES

In this section, we show that the constructions of geometric invariant theory carry
over for actions of linearly reductive group schemes on formal affine schemes.

Setup. LetG be a linear reductive affine group scheme over a locally noetherian scheme
S. Recall from [1, Section 12] that this means thatG→ S is flat, of finite type, and affine
and the morphism BG → S is cohomologically affine. If X is a locally noetherian for-
mal scheme over S, an action of G on X consists of a morphism σ : G ×S X → X such
that the usual diagrams commute. Let I be the largest ideal of definition in X (see [3,
0.7.1.6]). Note that both the projection and multiplication p2, σ : G ×S X → X are adic
morphisms, and that I is G-invariant.

If we denote Xn = (X,OX/I
n+1) as the closed subscheme defined by In+1, there are

induced compatible actions of G on Xn. Conversely, given compatible actions of G on
the Xn, there is a unique action of G on X restricting to the actions on Xn.

Suppose further that X = Spf B and S = SpecC where B is an I-adic C-algebra and
suppose thatG is an affine fppf linearly reductive group scheme over S. The action ofG
on X translates into a dual action σ# : B → Γ(G)⊗̂CB with σ#(I) ⊆ Γ(G)⊗̂I . This dual
action corresponds to a compatible family of dual actions σ#

n : B/In → Γ(G)⊗C B/In.
Define

BG = Eq(B
σ#
//

p#2

// Γ(G)⊗̂CB).

Then σ, p2 : G ×S X ⇒ X is a smooth, adic formal S-groupoid where the identity,
inverse and composition morphisms as well as the commutativity of the appropriate
diagrams are induced formally from the group action.

The quotient stacks Xn = [Xn/G] are cohomologically affine and therefore admit
good moduli spaces φn : Xn → Yn where Yn = Spec(B/In)G. Let Y = lim

−→
Yi and
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q : X → Y be the induced morphism. The observations in 3.1.2 through 3.1.5 have
obvious analogues to the case of group actions.

Theorems 3.1 translates into the following theorem.

Theorem 4.1. Assume the above notation.

(i) The natural map OY → (q∗OX)G is an isomorphism of sheaves of topological rings.
(ii) The functor from coherent sheaves on X with G-actions to sheaves on Y given by F 7→

(q∗F)G is exact. Furthermore, the morphism (q∗F)G → lim
←−

(φi)∗Fi is an isomorphism of
topological OY-modules.

(iii) q is surjective.
(iv) If Z ⊆ X is a closed, G-invariant formal subscheme, then q(Z) is closed.
(v) If Z1,Z2 ⊆ X are closed, G-invariant formal subschemes, then set-theoretically

q(Z1) ∩ q(Z2) = q(Z1 ∩ Z2).

(vi) q is universal for G-invariant maps to formal schemes.
(vii) If Y = Spf A is an affine formal scheme, then A is noetherian.

Suppose furthermore that Y0 is the spectrum of a local Artinian ring.

(viii) Y is a locally noetherian formal scheme. In particular, if Y = Spf A and m = ker(A→
A0), then A is an m-adic noetherian ring.

(ix) If F is a coherent sheaf of X with R-action, then (q∗F)G is a coherent OY-module.
(x) If I and J are two G-invariant coherent ideals in OX, then the natural map

(q∗I)G + (q∗J)G −→ (q∗(I + J))G

is an isomorphism.

�

Remark 4.2. The formal analogue of Nagata’s fundamental lemma for linear reductive
group actions ([6]) hold: if G is a linearly reductive group acting a noetherian affine
formal scheme Spf A, then

(i) for an invariant ideal J ⊆ A,

AG/(J ∩ AG)
∼→ (A/J)G,

(ii) for invariant ideals J1, J2 ⊆ A,

J1 ∩ AG + J2 ∩ AG
∼→ (J1 + J2) ∩ AG.
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5. ÉTALE LOCAL CONSTRUCTION OF GOOD MODULI SPACES

Recalling properties of good moduli spaces. We recall the necessary results from [2]
which generalize analogous results from [1].

Proposition 5.1. ([2, Corollary 6.6]) Consider a commutative diagram

X
f
//

φ
��

X ′

φ′

��
Y

g
// Y ′

with X ,X ′ locally noetherian Artin stacks of finite type over S, g locally of finite type, and φ, φ′

good moduli spaces. If f is étale, pointwise stabilizer preserving and weakly saturated, then g
is étale.

Proposition 5.2. ([2, Proposition 6.7]) Suppose X ,X ′ are locally noetherian Artin stacks
and

X
f
//

φ
��

X ′

φ′

��
Y

g
// Y ′

is commutative with φ, φ′ good moduli spaces. Suppose

(a) f is representable, quasi-finite and separated,
(b) g is finite,
(c) f is weakly saturated.

Then f is finite.

Proposition 5.3. ([2, Proposition 6.8]) Suppose X ,X ′ are locally noetherian Artin stacks
and

X
f
//

φ
��

X ′

φ′

��
Y

g
// Y ′

is a commutative diagram with φ, φ′ good moduli spaces. If f is representable, separated, étale,
stabilizer preserving and weakly saturated, then g is étale and the diagram is cartesian.

We prove a simple proposition which concludes that good moduli spaces exist lo-
cally near a preimage of a closed point after a quasi-finite, separated base change.

Proposition 5.4. Suppose there is a diagram

X
f
// X ′

φ′

��
Y ′
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with f a representable, quasi-finite, separated morphism of locally noetherian Artin stacks and
φ′ a good moduli space. Suppose ξ ∈ |X | has closed image ξ′ ∈ |X ′|. Then there exists an open
substack U ⊆ X containing ξ and a commutative diagram

U
f |U //

φ
��

X ′

φ′

��
Y

g
// Y ′

with φ a good moduli space.

Proof. By applying Zariski’s Main Theorem [4, Theorem 16.5], there is a factorization f :

X i→ X̃ f̃→ X ′ with i an open immersion and f̃ finite. Therefore, there is a commutative
diagram

X � � i // X̃

φ̃
��

f̃
// X ′

φ′

��
Ỹ

g̃
// Y ′

with φ̃ : X̃ → Ỹ := Spec φ′∗f̃∗OX̃ and g̃ is finite. Since f̃ is finite, ξ ∈ X̃ is closed.
Therefore, {ξ} and Z := X̃ r X are disjoint, closed substacks so φ̃(ξ) and φ̃(Z) are
closed and disjoint. If Y = Ỹ r φ̃(Z), then U = φ̃−1(Y ) is an open substack containing
ξ and contained in X admitting a good moduli space U → Y . �

We can also prove that good moduli spaces satisfy effective descent for separated,
étale, pointwise stabilizer preserving, and weakly saturated morphisms. A version of
the following proposition allows one to conclude that good moduli spaces for locally
noetherian Artin stacks are universal for maps to algebraic spaces (see [1, Theorem
6.6]).

Proposition 5.5. Suppose φ′ : X ′ → Y ′ is a good moduli space and f : X → X ′ is a
surjective, separated, étale, pointwise stabilizer preserving, and weakly saturated morphism of
locally noetherian Artin stacks. Then there exists a good moduli space φ : X → Y inducing
g : Y → Y ′ such that the diagram

X
f
//

φ
��

X ′

φ′

��
Y

g
// Y ′

is cartesian.

Proof. By applying Zariski’s Main Theorem, there is a factorization f : X i→ X̃ f̃→ X ′

with i an open immersion and f̃ finite.
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Since f is weakly saturated, it follows that X ⊆ X̃ is a saturated open substack.
Therefore, there exists a good moduli space φ : X → Y inducing a commutative dia-
gram

X
f
//

φ
��

X ′

φ′

��
Y

g
// Y ′

with g locally of finite type. Since f is étale, pointwise stabilizer preserving and weakly
saturated, it follows from Proposition 5.3 that g is étale and that the diagram is carte-
sian. �

Étale local existence. Theorem 1.3 allows us to deduce the existence of a good moduli
space for X étale locally on X :

Proof of Theorem 1.3. Let X2 = X1 ×X X1 with projections p1 and p2. By Proposition
5.5 applied to one of the projections, there exists a good moduli space X2 → Y2. The
two projections p1, p2 induce two morphisms q1, q2 : Y2 → Y1 such that qi ◦ φ2 = φ1 ◦ pi
for i = 1, 2. By [1, Theorem 4.15(xi)], both Y2 and Y1 are of finite type over S and by
Proposition 5.1, q1 and q2 are étale. The induced morphisms X2 → Y2 ×qi,Y1,φ1 X1 are
isomorphisms by Proposition 5.3. Similarly, by setting X3 = X1 ×X X1 ×X X1, there is
a good moduli space φ3 : X3 → Y3. The étale projections p12, p13, p23 : X3 → X2 induce
étale morphism q12, q13, q23 : Y3 → Y2. In summary, there is a diagram

X3

//
//
//

��

X2

p1 //
p2
//

��

X1

f
//

��

X

Y3

//
//
// Y2

q1 //
q2
// Y1,

where all horizontal arrows are étale and the squares φ2◦pij = qij◦φ3 and φ1◦pi = qi◦φ2

are cartesian.
There is an identity map e : X1 → X2, an inverse map i : X2 → X2 and a multiplica-

tion m : X2 ×p1,X1,p2 X2
∼= X3

p13→ X2 inducing 2-diagrams: p2 ◦ e
∼→ id

∼→ p1 ◦ e, i ◦ i
∼→ id,

t ◦ i = s, m ◦ (i, id)
∼→ e ◦ p1, m ◦ (id, i)

∼→ e ◦ p2, (e ◦ p1, id) ◦m ∼→ id
∼→ (e ◦ p2, id) ◦m

and (m, id) ◦m ∼→ (id,m) ◦m.
By universality of good moduli spaces, there is an induced identity map Y1 → Y2, an

inverse Y2 → Y2 and multiplication Y2×q1,Y1,q2Y2 → Y2 inducing commutative diagrams
(as above) giving Y2 ⇒ Y1 an étale S-groupoid structure.

We claim that ∆ : Y2 → Y1 × Y1 is a monomorphism. Since it is clearly unramified,
it suffices to check that ∆ is geometrically injective. We may assume S = Spec k with
k algebraically closed. Let y1 : Spec k → Y1, x1 : Spec k → X1 be the unique point in



LOCAL PROPERTIES OF GOOD MODULI SPACES 19

φ−1
1 (y1) closed in |X1|, and x : Spec k → X be the image of x1. Since the square

BGx
//

��

BGx ×k BGx

��
X2

//

��

X1 ×X1

��
X // X ×k X

is 2-cartesian, it follows that there can be only one preimage of (y1, y1) under ∆ and is
geometrically injective.

Therefore, there exist an algebraic space quotient Y and induced maps φ : X → Y

and Y1 → Y . Consider the diagram

X2
//

��

X1

��
X1

//

��

X

��
Y1

// Y.

SinceX2
∼= X1×Y1Y2 and Y2

∼= Y1×Y Y1, the top and outer squares above are 2-cartesian.
Since X1 → X is étale and surjective, it follows that the bottom square is cartesian. By
descent, φ : X → Y is a good moduli space. �

Remark 5.6. The above hypotheses of Theorem 1.3 can not be weakened to only re-
quire that f is stabilizer preserving at ξ1. Indeed, in Example 2.6, the natural étale
presentation f : X → X is stabilizer preserving at the origin and both projections
Z2 ×X ∼= X ×X X ⇒ X are weakly saturated. Clearly X admits a good moduli space
since it is a scheme but X does not admit a good moduli space.

As an application of Theorem 1.3, we get the following:

Corollary 5.7. Suppose X is an Artin stack locally of finite type with affine diagonal over an
excellent base scheme S. Then X admits a good moduli space if and only if X

red
does.

Proof. If φ : X → Y is a good moduli space, then [1, Lemma 4.14] implies that X
red
→

Y
red

is a good moduli space.
Conversely, suppose X

red
→ Y1 is a good moduli space with Y1 an algebraic space.

The question is Zariski-local on S and Y1 since determining whether good moduli
spaces of a Zariski-open cover glue depends only on the Zariski topology of |X | (see [1,
Proposition 7.9]). Therefore, we may assume that S is affine and Y1 is quasi-compact. If



20 JAROD ALPER

Y1 is affine, then by [1, Proposition 3.9 (iii)] X is cohomologically affine. (The statement
is also clear if Y1 is a scheme.)

Let U1 = SpecA → Y1 be an étale presentation, U1 := X
red
×Y U1 → U1 the induced

good moduli space and g1 : U1 → Xred
be the projection. There exists an Artin stack

U and a surjective étale morphism g : U → X such that g
red

= g1. There exists a good
moduli space U → Y yielding a 2-commutative diagram

X
red

� � //

��

X

U1

g1
==

� � //

��

U

g
??

��

Y1

U1

==

� � // Y.

Since g1 is the pullback of a morphism of algebraic spaces, it is pointwise stabilizer pre-
serving and universally weakly saturated. Since both of these properties don’t depend
on the non-reduced structure, it follows that g1 is pointwise stabilizer preserving and
universally weakly saturated. By applying Theorem 1.3, we conclude that X admits a
good moduli space. �
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