Math 309B/C Winter 2012, Homework 8
Due March 7
Below we will frequently use the formula \[ 2\int_{0}^{L}\sin
\frac{n\pi x}{L}\sin \frac{m\pi x}{L} = \int_{-L}^{L}\sin \frac{n\pi
x}{L}\sin \frac{m\pi x}{L} =\left\{\begin{array}{cc} 0 & n\neq m
\\ L & n=m\end{array}\right.\] whenever $n$ and $m$ are integers.
- Suppose $v(x,t)$ solves \[\left\{\begin{array}{cc}
\alpha^{2}v_{xx}=v_{tt} & t>0, x\in[0,L] \\
v(0,t)=v(L,t)=0 \\ v(x,0)=f(x) \\ v_{t}(x,0)=0
\end{array}\right.\] and $w(x,t)$ solves
\[\left\{\begin{array}{cc} \alpha^{2}w_{xx}=w_{tt} & t>0,
x\in[0,L] \\ w(0,t)=w(L,t)=0 \\ w(x,0)=0 \\ w_{t}(x,0)=g(x)
\end{array}\right..\] Show that $u(x,t)=v(x,t)+w(x,t)$ solves
\[\left\{\begin{array}{cc} \alpha^{2}u_{xx}=u_{tt} & t>0,
x\in[0,L] \\ u(0,t)=u(L,t)=0 \\ u(x,0)=f(x) \\ u_{t}(x,0)=g(x)
\end{array}\right.\] Answer: We just have to check that
$u$ satisfies all the conditions, so \[\alpha^{2} u_{xx} =
\alpha^{2}v_{xx}+\alpha^{2} w_{xx} =
v_{tt}+w_{tt}=(v+w)_{tt}=u_{tt}\] \[u(0,t)=v(0,t)+w(0,t)=0,
\;\;\; u(L,t)=v(L,t)+w(L,t)=0,\]
\[u(x,0)=v(x,0)+w(x,0)=f(x)+0=f(x)\]
\[u_{t}(x,0)=v_{t}(x,0)+w_{t}(x,0)=0+g(x)=g(x).\]
- Suppose that $f(x)=\sum_{n=1}^{\infty}c_{n}\sin\frac{n\pi
x}{L}$ for $x\in [0,L]$ and $u(x,t)$ is the solution to the
plucked string problem $\left\{\begin{array}{cc}
\alpha^{2}u_{xx}=u_{tt} & t>0, x\in [0,L] \\
u(0,t)=u(L,t)=0 & t>0 \\ u(x,0)=f(x) \\
u_{t}(x,0)=0\end{array}\right.$.
- Define $h(x)=\left\{\begin{array}{cc} f(x) & x\in
[0,L] \\ -f(-x) & x\in [-L,0]\end{array}\right.$, and
everywhere else by $h(x+2L)=h(x)$ (so $h$ is 2L-periodic).
Show that the Fourier series for $h$ in $[-L,L]$ is
$\sum_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{L}$. Answer:
Recall that the Fourier series for $h(x)$ has the form
\[h(x)=\frac{a_{0}}{2} +\sum_{n=1}^{\infty} a_{n}\cos
\frac{n\pi x}{L} + b_{n}\sin \frac{n\pi x}{L}.\] Note that
$h(x)$ is odd, since, for $x\in [0,L]$ (and hence $-x\in
[-L,0]$), \[h(-x)=-f(-(-x))=-f(x)=-h(x)\] and similarly if
$x\in [-L,0]$. Thus, $a_{0}=a_{n}=0$ always. Which means
really \[h(x) =\sum_{n=1}^{\infty} b_{n}\sin \frac{n\pi
x}{L}\] where \[b_{n}=\frac{1}{L}\int_{-L}^{L}h(x)\sin
\frac{n\pi x}{L}=\frac{2}{L}\int_{0}^{L}h(x) \sin\frac{n\pi
x}{L} = \frac{2}{L}\int_{0}^{L}f(x)\sin\frac{n\pi x}{L}\]
where in the last few steps we used the fact that $h(x)\sin
\frac{n\pi x}{L}$ is even and $h(x)=f(x)$ for $x\geq 0$. But
this quantity above is exactly $c_{n}$.
- Show that $u(x,t) = \frac{h(x+\alpha t)+h(x-\alpha
t)}{2}.$ Hint: Write out the sum for the right
side of this equation and use the angle formulas. Answer:
Note that \[ h(x+\alpha t)=
\sum_{n=1}^{\infty}c_{n}\sin\left(\frac{n\pi
x}{L}+\frac{\alpha t n\pi }{L}\right) =
\sum_{n=1}^{\infty}c_{n}\left( \sin\frac{n\pi x}{L}
\cos\frac{\alpha t n\pi }{L}+\cos\frac{n\pi x}{L}
\sin\frac{\alpha t n\pi }{L}\right) \] by the law of sines,
and similarly, \[ h(x-\alpha t)=
\sum_{n=1}^{\infty}c_{n}\left( \sin\frac{n\pi x}{L}
\cos\frac{\alpha t n\pi }{L}-\cos\frac{n\pi x}{L}
\sin\frac{\alpha t n\pi }{L}\right) .\] Adding these two
together and dividing by two gives
\[\sum_{n=1}^{\infty}c_{n} \sin\frac{n\pi x}{L}
\cos\frac{\alpha t n\pi }{L} = u(x,t).\]
In the problems below, you'll be given a problem of the form
\[\left\{\begin{array}{cc} \alpha^{2}u_{xx}=u_{tt} & t>0,
x\in[0,L] \\ u(0,t)=u(L,t)=0 \\ u(x,0)=f(x) \\ u_{t}(x,0)=g(x)
\end{array}\right.\] The trick is to split this into two problems:
first solve for $v(x,t)$ where $v$ solves
\[\left\{\begin{array}{cc} \alpha^{2}v_{xx}=v_{tt} & t>0,
x\in[0,L] \\ v(0,t)=v(L,t)=0 \\ v(x,0)=f(x) \\ v_{t}(x,0)=0
\end{array}\right.\] This has solution \[v(x,t)= \sum_{n=1}^\infty
c_{n}\sin \frac{n\pi x}{L}\cos\frac{\alpha n\pi t}{L}, \;\;\;
\mbox{ where } \;\;\; c_{n}=\frac{2}{L}\int_{0}^{L} f(x)\sin
\frac{n\pi x}{L}.\] Then solve for $w(x,t)$, which solves
\[\left\{\begin{array}{cc} \alpha^{2}w_{xx}=w_{tt} & t>0,
x\in[0,L] \\ w(0,t)=w(L,t)=0 \\ w(x,0)=0 \\ w_{t}(x,0)=g(x)
\end{array}\right..\] This has solution \[w(x,t)=
\sum_{n=1}^\infty c_{n}\sin \frac{n\pi x}{L}\sin\frac{\alpha n\pi
t}{L}, \;\;\; \mbox{ where } \;\;\; c_{n}=\frac{2}{\alpha
n\pi}\int_{0}^{L} f(x)\sin \frac{n\pi x}{L}.\] Then
$u(x,t)=v(x,t)+w(x,t)$ solves the original problem.
- In each case below, solve for $u(x,t)$, where $u$ gives the
vertical displacement at time $t$ of a string fixed at $x=0$ and
$x=L$ of initial displacement $f(x)$ and initial (vertical)
velocity $g(x)$:
- $f(x)=\left\{\begin{array}{cc} \frac{x}{K} & 0\leq
x\leq \frac{K}{2} \\ \frac{K-x}{K} & \frac{K}{2}\leq
x\leq K\end{array}\right.$, $g(x)=0$, $\alpha=2$, $L=K$.
- $f(x)=0$, $L=1$, $g(x)=\sin \pi x+\sin 2\pi x+\sin 5\pi
x$, $\alpha=1$. Answer: The solution to this will
be of the form \[u(x,t)=\sum_{n=1}^{\infty}c_{n}\sin n\pi
x\sin n\pi t\] where \[c_{n}=\frac{2}{1\cdot \pi
n}\int_{0}^{1}(\sin \pi x+\sin 2\pi x + \sin 5\pi x)\sin
n\pi x = \frac{1}{n\pi}\left( \underbrace{ 2\int_{0}^{1}\sin
\pi x\sin n \pi x}_{(1)} +\underbrace{2\int_{0}^{1}\sin 2\pi
x\sin n \pi x}_{(2)} +\underbrace{2\int_{0}^{1}\sin 5 \pi
x\sin n \pi x}_{(3)}\right).\] Note that
\[(1)=\left\{\begin{array}{cc} 1 & n=1 \\ 0 & n\neq
1\end{array}\right.,\] \[(2)=\left\{\begin{array}{cc} 1
& n=2 \\ 0 & n\neq 2\end{array}\right.,\]
\[(3)=\left\{\begin{array}{cc} 1 & n=5 \\ 0 & n\neq
5\end{array}\right.,\] and thus \[c_{n} =
\left\{\begin{array}{cc} = \frac{1}{\pi} & n=1 \\ 0
& n\neq 1 \\ \frac{1}{2\pi} & n=2 \\ 0 & n\neq 2
\\ \frac{1}{5\pi} & n=5 \\ 0 & n\neq 5 \\ 0 &
n\neq 1,2,5\end{array}\right..\] Which means that there are
only 3 terms in the series giving $u$: \[u(x,t)=c_{1}\sin
1\pi x\sin 1\pi t + c_{2}\sin 2\pi x\sin 2\pi t+c_{5}\sin
5\pi x\sin 5\pi t = \frac{1}{\pi}\sin \pi x\sin \pi t +
\frac{1}{2\pi}\sin 2\pi x\sin 2\pi t+\frac{1}{5\pi}\sin 5\pi
x\sin 5\pi t .\]
- $f(x)=\sin \frac{\pi x}{3}$, $L=2$, $\alpha=3$,
$g(x)=\sin \pi x$ Answer: For this one, we split
into two problems and solve them independently. We first
pretend that $g(x)=0$ and solve for a function $v(x,t)$ so
that $v(x,0)=f(x)$ and $v_{t}(x,0)=0$.
\[c_{n}=\frac{2}{2}\int_{0}^{2} \sin\frac{\pi x}{3}
\sin\frac{n\pi x}{2}.\] Note that we can't use that clever
formula for computing this integral of a product of sines,
so we have to do integration by parts twice:
\begin{multline*} c_{n}=\int_{0}^{2} \sin\frac{\pi x}{3}
\sin\frac{n\pi x}{2} =-\frac{2}{n\pi}\sin\frac{\pi
x}{3}\cos\frac{n\pi x}{2}|_{0}^{2}
+\frac{2}{3n}\int_{0}^{2}\cos\frac{\pi x}{3} \cos\frac{n\pi
x}{2}\\ =-\frac{2}{n\pi}\sin\frac{2\pi }{3} \cos n\pi
+\frac{4}{3n^{2}\pi}\cos\frac{\pi x}{3} \sin\frac{n\pi
x}{2}|_{0}^{2}+\frac{4}{9n^{2}}\underbrace{\int_{0}^{2}\sin\frac{\pi
x}{3} \sin\frac{n\pi x}{2}}_{=c_{n}}\\
=-\frac{2}{n\pi}\sin\frac{2\pi }{3} \cos
n\pi+\frac{4}{9n^{2}}c_{n} \end{multline*} and solving both
sides of this long equation for $c_{n}$ gives
\[c_{n}=-\frac{\frac{2}{n\pi}\sin\frac{2\pi }{3} \cos
n\pi}{1-\frac{4}{9n^{2}}}.\] Thus, the solution for this
partial problem is
\[v(x,t)=\sum_{n=1}^{\infty}-\frac{\frac{2}{n\pi}\sin\frac{2\pi
}{3}\cos n\pi}{1-\frac{4}{9n^{2}}}\sin \frac{n\pi x}{2}\cos
\frac{3n\pi t}{2}.\] Now we solve the problem for $w(x,t)$
with $w(x,0)=0$ and $w_{t}(x,0)=g(x)=\sin \pi x$ (that is,
we pretend this time that $f(x)$ is zero). Now the solution
will have the form \[w(x,t)=\sum_{n=1}^{\infty}c_{n}\sin
\frac{n\pi x}{2}\sin\frac{3n\pi t}{2}\] where
\[c_{n}=\frac{2}{3 n \pi}\int_{0}^{2}\sin \pi
x\sin\frac{n\pi x}{2}\] Notice that \[2\int_{0}^{2}\sin \pi
x\sin\frac{n\pi x}{2}=2\int_{0}^{2}\sin \frac{2\pi
x}{2}\sin\frac{n\pi x}{2}=\left\{\begin{array}{cc} 0 &
n\neq 2 \\ 2 & n=2\end{array}\right.\] so that \[c_{n} =
\left\{\begin{array}{cc} 0 & n\neq 2 \\ \frac{2}{3\cdot
2\pi}\cdot 2=\frac{2}{3\pi} & n=2\end{array}\right.\] so
the solution to this problem is
\[w(x,t)=\sum_{n=1}^{\infty}c_{n}\sin \frac{n\pi
x}{2}\sin\frac{3n\pi t}{2}=\frac{2}{3\pi}\sin 2\pi x\sin
6\pi t.\] The final solution to the entire problem is
\[u(x,t)=v(x,t)+w(x,t)=\sum_{n=1}^{\infty}-\frac{\frac{2}{n\pi}\sin\frac{2\pi}{3}\cos
n\pi}{1-\frac{4}{9n^{2}}}\sin \frac{n\pi x}{2}\cos
\frac{3n\pi t}{2} +\frac{2}{3\pi}\sin 2n\pi x\sin 6\pi t.\]
- $f(x)=0$, $g(x)=x(x-1)$, $L=1$, $\alpha=4$
- $g(x)=x+\sin x$, $f(x)=\sin 2x$, $L=\pi$, $\alpha=4$
Answer: Again, we split this into two problems.
First, we solve for $v(x,t)$ which solves the problem
assuming $v_{t}(x,0)=0$ and $v(x,0)=f(x)=\sin 2x$.
\[c_{n}=\frac{2}{\pi}\int_{0}^{\pi}\sin 2x\sin n x =
\frac{1}{\pi}\left(2\int_{0}^{\pi}\sin\frac{2\pi
x}{\pi}\sin\frac{n\pi
x}{\pi}\right)=\left\{\begin{array}{cc} 0 & n\neq 2 \\
\frac{1}{\pi} \cdot \pi =1 & n=2\end{array}\right.\] And
the solution to this problem is \[v(x,t)=\sum_{n=1}^{\infty}
c_{n} \sin n x\cos 4nt = \sin 2x\cos 8t.\] Now we pretend
that $f(x)=0$ and solve for $w(x,t)$ where $w(x,0)=0$ and
$w_{t}(x,0)=g(x)=x+\sin x$. Here, it makes a little more
sense to split the problem further: we'll solve for
$w^{(1)}$ and $w^{(2)}$ where $w^{(1)}_{t}(x,0)=x$ and
$w^{(2)}_{t}(x,t)=\sin x$. In the end, we'll add these
solutions together to get $w(x,t)$ (note that
$w_{t}(x,0)=w^{(1)}(x,0)+w^{(2)}(x,0)=x+\sin x$, just as
before). You could solve this problem the usual way, but
this way will reduce some confusion about what to do with
the coefficients $c_{n}$ later. Just watch: For $w^{(1)}$,
the associated coefficients are
\[c_{n}=\frac{2}{4n\pi}\int_{0}^{\pi} x\sin nx =
-\frac{2}{4n^2\pi}x\cos
nx|_{0}^{\pi}+\int_{0}^{\pi}\frac{2}{4n^2\pi }\cos nx =
-\frac{2}{4n^2}\cos n\pi +\frac{4}{4n^{3}\pi^{2}}\sin
nx|_{0}^{\pi}=-\frac{1}{2n^2}\cos n\pi,\] and so
\[w^{(1)}(x,t)=\sum_{n=1}^{\infty}\frac{1}{2n^2}\cos n\pi
\sin nx \sin 4nt\] and $w^{(2)}$ has associated constants
\[c_{n}=\frac{2}{4n\pi}\int_{0}^{\pi} \sin x \sin nx =
\frac{1}{4n\pi}
\left(\int_{0}^{\pi}\sin\frac{x\pi}{\pi}\sin\frac{n\pi}{\pi}\right)=\left\{\begin{array}{cc}
0 & n\neq 1 \\ \frac{1}{4\cdot 1\cdot
\pi}\pi=\frac{1}{4} & n=1\end{array}\right.,\] so
\[w^{(2)}(x,t)=\sum_{n=1}^{\infty}c_{n}\sin nx \sin 4nt=
\frac{1}{4}\sin x\sin 4t.\] Hence
\[w(x,t)=w^{(1)}(x,t)+w^{(2)}(x,t)=
\sum_{n=1}^{\infty}\frac{1}{2n^2}\cos n\pi \sin nx \sin 4nt
+ \frac{1}{4}\sin x\sin 4t\] (notice that that last term is
outside the sum), and finally
\[u(x,t)=v(x,t)+w(x,t)=\sum_{n=1}^{\infty} c_{n} \sin n
x\cos 4nt = \sin 2x\cos 8t +
\sum_{n=1}^{\infty}\frac{1}{2n^2}\cos n\pi \sin nx \sin 4nt
+ \frac{1}{4}\sin x\sin 4t.\]
- $f(x)=0$, $g(x)=1-\cos \pi x$, $L=2$, $\alpha=3$.
Answer: For this one, \[u(x,t)=\sum_{n=1}^{\infty}
c_{n}\sin \frac{n\pi}{2}\sin \frac{3n\pi t}{2}\] where
\[c_{n}=\frac{2}{3n\pi}\int_{0}^{2}(1-\cos\pi x)\sin
\frac{n\pi x}{2}.\] Let's evaluate the integral first, and
do so by splitting it into two pieces. First we evaluate
\[\int_{0}^{2}1\cdot \sin\frac{n\pi x}{2} =-\frac{2}{n\pi
}\cos \frac{n\pi x}{2}|_{0}^{2}=\frac{2}{n\pi}(1-\cos
n\pi)\] and \begin{multline*} \int_{0}^{2}\cos \pi x\sin
\frac{n\pi x}{2} = \frac{1}{\pi}\sin \pi x\sin \frac{n\pi
x}{2}|_{0}^{2} -\frac{n}{2}\int_{0}^{2}\sin \pi x\cos
\frac{n\pi x}{2}\\ =0+\frac{n}{2\pi}\cos \pi x\cos
\frac{n\pi x}{2}|_{0}^{2}+\frac{n^{2}}{4}\int_{0}^{2}\cos
\pi x\sin \frac{n\pi x}{2}\end{multline*} Now subtract
$\frac{n^{2}}{4}\int_{0}^{2}\cos \pi x\sin \frac{n\pi x}{2}$
from both sides and divide by $1-\frac{n^{2}}{4}$ to get
\[\int_{0}^{2}\cos \pi x\sin \frac{n\pi x}{2} =
\frac{\frac{n}{2\pi}\cos \pi x\cos \frac{n\pi
x}{2}|_{0}^{2}}{1-\frac{n^{2}}{4}} =
\frac{\frac{n}{2\pi}(\cos n\pi-1)}{1-\frac{n^{2}}{4}}\]
Hence, \begin{multline*}
c_{n}=\frac{2}{3n\pi}\int_{0}^{2}(1-\cos\pi x)\sin
\frac{n\pi x}{2}=\frac{2}{3n\pi}\left(\int_0^{2}1\cdot
\sin\frac{n\pi x}{2} -\int_{0}^{2}\cos \pi x\sin\frac{n\pi
x}{2}\right) \\ = \frac{2}{3n\pi}\left(\frac{2}{n\pi}(1-\cos
n\pi)-\frac{\frac{n}{2\pi}(\cos
n\pi-1)}{1-\frac{n^{2}}{4}}\right) =\frac{2}{3n\pi}(1-\cos
n\pi)\left(\frac{2}{n\pi}+\frac{\frac{n}{2\pi}}{1-\frac{n^{2}}{4}}\right).
\end{multline*}
and
so
the final solution is \[u(x,t)=\sum_{n=1}^{\infty}
\frac{2}{3n\pi}(1-\cos
n\pi)\left(\frac{2}{n\pi}+\frac{\frac{n}{2\pi}}{1-\frac{n^{2}}{4}}\right)\sin
\frac{n\pi}{2}\sin
\frac{3n\pi t}{2}.\]
- $f(x)=1$, $g(x)=0$, $L=1$, $\alpha=1$.
- If $u$ models the displacement of a string from $0$ to $L$
that is free at $x=L$ where, instead of letting $u(L,t)=0$, we
replace this with the condition that $u_{x}(L,t)=0$. This allows
the string to move freely at one end. Use the separation of
variables method to find a sequence of simple solutions like we
did with the heat and wave equations, only now take head of this
new boundary condition when solving for the admissible
$\lambda$'s, $X$'s and $T$'s.
\