Homework 6, due July 26 at beginning of class.

  1. Find the oblique asymptotes (don't graph anything, just solve for the lines, you also don't have to compute any limits, but show how you solved for the line):
    1. $\frac{x^{2}+4x+10}{x+2}$
      Answer: We do polynomial long division to show that $x^{2}+4x+10=(x+2)(x+2)+6$, and so \[\frac{x^{2}+4x+10}{x+2}=\frac{(x+2)(x+2)+6}{x+2}=x+2+\frac{6}{x+2},\] and hence the oblique asymptote is $x+2$.
    2. $\frac{x^{3}+3x^{2}+4}{x^{2}+2x+1}$ Answer: Again, long division shows that the numerator is equal to $(x^{2}+2x+1)(x+1)-3x+3$, and so \[ \frac{x^{3}+3x^{2}+4}{x^{2}+2x+1}=\frac{(x^{2}+2x+1)(x+1)-3x+3}{x^{2}+2x+1}=x+1+\frac{-3x+3}{x^{2}+2x+1},\] and so $x+1$ is the oblique asymptote.
    3. $\frac{3x^{4}-6x^{3}+1}{x^{3}-2x^{2}+1}$.
  2. Compute the following limits using l'Hospitals rule
    1. $\lim_{x\rightarrow 0} \frac{\sin x}{x}$ Since the limit of the top and bottom of this fraction as $x\rightarrow 0$ are both zero, we can apply l'Hospital's rule, \[\lim_{x\rightarrow 0}\frac{\sin x}{x}=\lim_{x\rightarrow 0}\frac{(\sin x)'}{(x)'}=\lim_{x\rightarrow 0}\frac{\cos x}{1}=\frac{\cos 0}{1}=1.\]
    2. $\lim_{x\rightarrow 0} \frac{\cos x}{x^{2}}$ This is a typo, you can't use l'Hospital's rule on this one, it will not be graded.
    3. $\lim_{x\rightarrow 0}\frac{\sin (\sin x)}{x}$ Again, the limit of the top and bottom are both zero, so we use l'Hospitals rule, \lim_{x\rightarrow 0}\frac{\sin (\sin x)}{x} =\lim_{x\rightarrow 0}\frac{(\sin (\sin x))'}{(x)'}=\lim_{x\rightarrow 0}\frac{\cos\sin x(\cos x)}{1}=\frac{(\cos\sin 0)(\cos 0)}{1}=1.\]
    4. $\lim_{x\rightarrow 1} \frac{e^{2x}-e^{2}}{e^{x}-e}$ The limit of the top and bottom are both zero, so l'Hopital's rule: \[\lim_{x\rightarrow 1} \frac{e^{2x}-e^{2}}{e^{x}-e}=\lim_{x\rightarrow 1} \frac{(e^{2x}-e^{2})'}{(e^{x}-e)'}=\lim_{x\rightarrow 1}\frac{2e^{2x}}{e^{x}}=\frac{2e^{2}}{e^{1}}=2e.\]
    5. $\lim_{x\rightarrow\infty} (\sin e^{-x})^{\frac{1}{x}}$ For this, we take $e^{\ln}$ of this to get \lim_{x\rightarrow\infty} (\sin e^{-x})^{\frac{1}{x}}=\lim_{x\rightarrow\infty} e^{\ln (\sin e^{-x})^{\frac{1}{x}}} =\lim_{x\rightarrow\infty} e^{\frac{1}{x}\ln (\sin e^{-x})}.\] So we just need to compute the limit of the exponent. It is a product of two functions: $\frac{1}{x}$ (which goes to zero in the limit) and $\ln \sin e^{-x}$ (which goes to $-\infty$, since $e^{-x}\rightarrow 0$, hence so does $\sin e^{-x}$, and $\lim_{x\rightarrow\infty} \ln \sin e^{-x} \lim_{y\rightarrow 0} \ln y=-\infty$). Hence, the limit is inteterminate. For such an inteterminate limit, we divide one of the functions by one over the other, and then use l'Hospital's rule, as follows: \[\lim_{x\rightarrow \infty} \frac{1}{x}\ln \sin e^{-x}=\lim_{x\rightarrow\infty}\frac{\ln \sin e^{-x}}{1/(1/x)}=\lim_{x\rightarrow\infty}\frac{\ln \sin e^{-x}}{x}\] and then we use l'Hospitals rule by differentiating the top and bottom, so thisis equal to \[\lim_{x\rightarrow\infty} \frac{\frac{1}{\sin e^{-x}} (\cos e^{-x})(-e^{-x}) }{1} = \lim_{x\rightarrow \infty} -\frac{e^{-x}\cos e^{-x}}{\sin e^{-x}}.\] Note that $\lim_{x\rightarrow\infty} \cos e^{-x}=\cos (\lim_{x\rightarrow 0} e^{-x})=\cos 0=1,$ so we only need to compute the limit of $-\frac{e^{-x}}{\sin e^{-x}}$. Again, the top and bottom go to zero, hence we use l'Hospital's rule once more to get \[\lim_{x\rightarrow \infty} -\frac{e^{-x}}{\sin e^{-x}}=\lim_{x\rightarrow \infty} -\frac{-e^{-x}}{-e^{-x}\cos e^{-x}}=\lim_{x\rightarrow\infty} -\frac{1}{\cos e^{-x}}=-1,\] and hence \[\lim_{x\rightarrow\infty} -\frac{e^{-x}\cos e^{-x}}{\sin e^{-x}} = (\lim_{x\rightarrow\infty} \frac{1}{\cos e^{-x}})(\lim_{x\rightarrow \infty} -\frac{e^{-x}}{\sin e^{-x}})=1\cdot(-1)=-1,\] and thus \[\lim_{x\rightarrow\infty} (\sin e^{-x})^{\frac{1}{x}}=e^{-1}=\frac{1}{e}\]
    6. $\lim_{x\rightarrow\infty} (1+x)^{\frac{1}{x}}$ Again, we take $e^{\ln}$ to get \[(1+x)^{\frac{1}{x}}=e^{\ln (1+x)^{\frac{1}{x}}}=e^{\frac{1}{x}\ln (1+x)}=e^{\frac{\ln(1+x)}{x}}\], so to compute our limit, we just need to compute the limit of the exponent, i.e. the limit of $\frac{\ln(1+x)}{x}$. As $x\rightarrow\infty$, both the top and bottom go to infinity, so we may use l'Hospital's rule: \[\lim_{x\rightarrow\infty}\frac{\ln(1+x)}{x}=\lim_{x\rightarrow\infty}\frac{1/(1+x)}{1}=0,\] and hence \[\lim_{x\rightarrow\infty}(1+x)^{\frac{1}{x}}=\lim_{x\rightarrow\infty} e^{\ln (1+x)^{\frac{1}{x}}}=e^{\lim_{x\rightarrow\infty} \ln (1+x)^{\frac{1}{x}}}=e^{0}=1.\]
    7. $\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}$. The first few steps to this problem are exactly the same as the previous, only now we need to compute $\lim_{x\rightarrow 0}\frac{\ln(1+x)}{x}$ as $x\rightarrow 0 $ (as opposed to $x\rightarrow\infty$). Since the limits of the top and bottom are both zero (recall that $\ln(1)=0$), we may use l'Hospital's rule to compute \[\lim_{x\rightarrow 0}\frac{\ln(1+x)}{x}=\lim_{x\rightarrow 0} \frac{1/(1+x)}{1}=1,\] and thus \[\lim_{x\rightarrow 0} (1+x)^{\frac{1}{x}}=e^{\lim_{x\rightarrow 0} \frac{\ln(1+x)}{x}}=e^{1}=e.\]
    8. $\lim_{x\rightarrow\infty} (\ln x)\sin \frac{1}{\ln x}$ This limit is inteterminate since it is the limit of a product of a function going to $\infty $, $\ln x$, and a function going to zero, $\sin \frac{1}{\ln x}$. To see this latter fact, note that $\lim_{x\rightarrow\infty} \ln x=\infty$, hence $\lim_{x\rightarrow \infty}\frac{1}{\ln x}=0$, so $\lim_{x\rightarrow\infty}\sin \frac{1}{\ln x}=\sin \lim_{x\rightarrow\infty} \frac{1}{\ln x}=\sin 0=0$. Hence, we rewrite this as \[\frac{\sin \frac{1}{\ln x}}{\frac{1}{\ln x}}\] and comptue the limit of this using l'Hospital's rule (since now both top and bottom are converging to zero), hence \[\lim_{x\rightarrow\infty} \frac{\sin \frac{1}{\ln x}}{\frac{1}{\ln x}} =\lim_{x\rightarrow \infty} \frac{(\sin \frac{1}{\ln x})'}{(\frac{1}{\ln x})'} =\lim_{x\rightarrow\infty} \frac{ (\cos \frac{1}{\ln x})(\frac{1}{\ln x})'}{(\frac{1}{\ln x})'}=\lim_{x\rightarrow\infty} \cos\frac{1}{\ln x}=\cos 0=1.\]