Irreducible representations of Khovanov-Lauda-Rouquier algebras of finite type

Alexander Kleshchev and Arun Ram

University of Oregon and University of Melbourne

January 14, 2010
Lie theoretic data

Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way.
Lie theoretic data

Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way. For example,

$$A_\infty : \quad \cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$$

$$A_2^{(1)} : \quad \begin{array}{c}
\downarrow \hspace{1cm} 0 \\
\downarrow \\
2 \leftarrow 1
\end{array}$$
Lie theoretic data

Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way. For example,

$$A_\infty : \quad \cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$$

$$A^{(1)}_2 : \quad \begin{array}{c}
0 \\
\downarrow \\
2 \leftarrow 1
\end{array}$$

- $\{\alpha_i\}_{i \in I}$ the set of simple roots;
Lie theoretic data

Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way. For example,

\begin{align*}
A_\infty: & \quad \cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \\
A_2^{(1)}: & \quad \begin{array}{c}
\rightarrow \\
0
\end{array} \\
& \quad \begin{array}{c}
\leftarrow \\
2 \leftarrow 1
\end{array}
\end{align*}

- $\{\alpha_i\}_{i \in I}$ the set of simple roots;
- Φ_+ the corresponding set of positive roots;
Lie theoretic data

Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way. For example,

$$A_{\infty} : \quad \cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$$

$$A_{2}^{(1)} : \quad \begin{array}{c}
0 \\
2 \leftarrow 1
\end{array}$$

- $\{\alpha_i\}_{i \in I}$ the set of simple roots;
- Φ_+ the corresponding set of positive roots;
- $Q_+ := \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \cdot \alpha_i$;
Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way. For example,

$$A_\infty: \quad \cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$$

$$A_2^{(1)}: \quad \begin{array}{c}
0 \\
2 \leftarrow 1
\end{array}$$

- $\{\alpha_i\}_{i \in I}$ the set of simple roots;
- Φ_+ the corresponding set of positive roots;
- $Q_+ := \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \cdot \alpha_i$;
- for $\alpha = \sum_{i \in I} m_i \alpha_i \in Q_+$, denote $ht(\alpha) := \sum_{i \in I} m_i$;
Let \(C = (C_{ij})_{i,j \in I} \) be a generalized Cartan matrix. Identify the index set \(I \) with the vertices of the corresponding Dynkin diagram \(\Gamma \). Orient the edges of \(\Gamma \) in an arbitrary way. For example,

\[
A_{\infty} : \quad \cdots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots
\]

\[
A^{(1)}_2 : \quad \begin{array}{c}
\uparrow \\
0 \\
\downarrow \\
2 \leftarrow 1
\end{array}
\]

- \(\{\alpha_i\}_{i \in I} \) the set of simple roots;
- \(\Phi_+ \) the corresponding set of positive roots;
- \(Q_+ := \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \cdot \alpha_i \);
- for \(\alpha = \sum_{i \in I} m_i \alpha_i \in Q_+ \), denote \(\text{ht}(\alpha) := \sum_{i \in I} m_i \);
- \(\mathcal{W} := \bigsqcup_{d \geq 0} I^d \) (words in the alphabet \(I \)).
Lie theoretic data

Let $C = (C_{ij})_{i,j \in I}$ be a generalized Cartan matrix. Identify the index set I with the vertices of the corresponding Dynkin diagram Γ. Orient the edges of Γ in an arbitrary way. For example,

$A_\infty : \quad \ldots \rightarrow -2 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \ldots$

$A^{(1)}_2 : \quad \begin{array}{c} 0 \\ \downarrow \\ 2 \leftarrow 1 \end{array}$

- $\{\alpha_i\}_{i \in I}$ the set of simple roots;
- Φ_+ the corresponding set of positive roots;
- $Q_+ := \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \cdot \alpha_i$;
- for $\alpha = \sum_{i \in I} m_i \alpha_i \in Q_+$, denote $ht(\alpha) := \sum_{i \in I} m_i$;
- $W := \bigsqcup_{d \geq 0} I^d$ (words in the alphabet I);
- for $\alpha \in Q_+$, define words of weight α:

$$W^\alpha := \{i = (i_1, \ldots, i_d) \in W \mid \alpha_{i_1} + \cdots + \alpha_{i_d} = \alpha\}.$$
Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

\[R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0}) \]

given by generators and relations.
KLR algebras

Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

\[R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0}) \]

given by generators and relations. Fix the ground field \(F \).
Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

\[R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0}) \]

given by generators and relations. Fix the ground field \(F \). Then

\[R_d = \bigoplus_{\alpha \in Q_+, \, \text{ht}(\alpha) = d} R_\alpha. \]
Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

\[R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0}) \]

given by generators and relations. Fix the ground field \(F \). Then

\[R_d = \bigoplus_{\alpha \in Q_+, \, \text{ht}(\alpha) = d} R_\alpha. \]

Each \(R_\alpha \) (= a block of \(R_d \)) is a unital \(F \)-algebra generated by

\[\{ e(i) \mid i \in W^\alpha \} \cup \{ y_1, \ldots, y_d \} \cup \{ \psi_1, \ldots, \psi_{d-1} \} \]

and some relations.
Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

\[R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0}) \]

given by generators and relations. Fix the ground field \(F \). Then

\[R_d = \bigoplus_{\alpha \in Q_+, \, \text{ht}(\alpha) = d} R_{\alpha}. \]

Each \(R_{\alpha} \) (= a block of \(R_d \)) is a unital \(F \)-algebra generated by

\[\{ e(i) \mid i \in W^\alpha \} \cup \{ y_1, \ldots, y_d \} \cup \{ \psi_1, \ldots, \psi_{d-1} \} \]

and some relations. For example, the relations say that \(e(i) \)'s are mutually orthogonal idempotents which sum to 1,
KLR algebras

Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

$$R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0})$$

given by generators and relations. Fix the ground field F. Then

$$R_d = \bigoplus_{\alpha \in Q_+, \, \text{ht}(\alpha) = d} R_{\alpha}.$$

Each R_{α} (= a block of R_d) is a unital F-algebra generated by

$$\{e(\mathbf{i}) \mid \mathbf{i} \in W^{\alpha}\} \cup \{y_1, \ldots, y_d\} \cup \{\psi_1, \ldots, \psi_{d-1}\}$$

and some relations. For example, the relations say that $e(\mathbf{i})$’s are mutually orthogonal idempotents which sum to 1, that e’s and y’s commute,
Khovanov-Lauda’08 and Rouquier’08 have defined graded algebras

\[R_d = R_d(C) \quad (d \in \mathbb{Z}_{\geq 0}) \]
given by generators and relations. Fix the ground field \(F \). Then

\[R_d = \bigoplus_{\alpha \in Q_+, \, \text{ht}(\alpha) = d} R_\alpha. \]

Each \(R_\alpha \) (= a block of \(R_d \)) is a unital \(F \)-algebra generated by

\[\{e(i) \mid i \in W^\alpha\} \cup \{y_1, \ldots, y_d\} \cup \{\psi_1, \ldots, \psi_{d-1}\} \]

and some relations. For example, the relations say that \(e(i) \)'s are mutually orthogonal idempotents which sum to 1, that \(e \)'s and \(y \)'s commute, there is an important relation

\[e(i)\psi_r = \psi_r e((r, r + 1) \cdot i), \]
and there are explicit relations between y’s and ψ’s and between different ψ’s, all depending on the idempotents,
and there are explicit relations between y’s and ψ’s and between different ψ’s, all depending on the idempotents, for example

\[(y_{r+1}\psi_r - \psi_r y_r)e(i) = \begin{cases}
 e(i) & \text{if } i_r = i_{r+1}, \\
 0 & \text{if } i_r \neq i_{r+1}.
\end{cases}\]
and there are explicit relations between y’s and ψ’s and between different ψ’s, all depending on the idempotents, for example

$$(y_{r+1}\psi_r - \psi_ry_r)e(i) = \begin{cases} e(i) & \text{if } i_r = i_{r+1}, \\ 0 & \text{if } i_r \neq i_{r+1}. \end{cases}$$

$$\psi_r^2 e(i) = Q_{i_r,i_{r+1}}(y_r,y_{r+1})e(i).$$

for certain explicit polynomial $Q_{i_r,i_{r+1}}$ depending on $c_{i_r,i_{r+1}}$ and orientation (i.e. on how i_r and i_{r+1} are connected in the Dynkin diagram).
and there are explicit relations between y’s and ψ’s and between different ψ’s, all depending on the idempotents, for example

$$(y_{r+1}\psi_r - \psi_r y_r)e(i) = \begin{cases} e(i) & \text{if } i_r = i_{r+1}, \\
0 & \text{if } i_r \neq i_{r+1}. \end{cases}$$

$$\psi_r^2 e(i) = Q_{i_r,i_{r+1}}(y_r,y_{r+1})e(i).$$

for certain explicit polynomial $Q_{i_r,i_{r+1}}$ depending on $c_{i_r,i_{r+1}}$ and orientation (i.e. on how i_r and i_{r+1} are connected in the Dynkin diagram).

Note that the Lie type C comes in through the idempotents $e(i)$, not through Coxeter relations...
and there are explicit relations between y’s and ψ’s and between different ψ’s, all depending on the idempotents, for example

$$(y_{r+1}\psi_r - \psi_r y_r)e(i) = \begin{cases} e(i) & \text{if } i_r = i_{r+1}, \\ 0 & \text{if } i_r \neq i_{r+1}. \end{cases}$$

$$\psi_r^2 e(i) = Q_{i_r,i_{r+1}}(y_r,y_{r+1})e(i).$$

for certain explicit polynomial $Q_{i_r,i_{r+1}}$ depending on $c_{i_r,i_{r+1}}$ and orientation (i.e. on how i_r and i_{r+1} are connected in the Dynkin diagram).

Note that the Lie type C comes in through the idempotents $e(i)$, not through Coxeter relations...

A (\mathbb{Z}-)grading on R_α is defined by prescribing explicit degrees to the generators $e(i)$, $y_r e(i)$, and $\psi_r e(i)$.
Motivation for KLR algebras

Motivation 1: Khovanov-Lauda and Rouquier used R_d to categorify quantum groups.

More precisely, the Khovanov-Lauda theorem says that the category of finitely generated projective graded modules over the algebras R_d for all $d \in \mathbb{Z}_{\geq 0}$ categorify the negative part f of the quantum group corresponding to the Cartan matrix C.

This leads to a definition of 2-Kac-Moody algebras and further categorical generalizations of Kac-Moody algebras, quantum groups and modules over them.

Motivation 2: Brundan-K.’08 constructed explicit isomorphisms between the usual cyclotomic Hecke algebras $H_\Lambda d$ and the corresponding cyclotomic quotients $R_\Lambda d$ of R_d for C “of type A”:

$$H_\Lambda d \cong R_\Lambda d (C)$$

This sheds some new light on the classical representation theory of Hecke algebras and symmetric groups, for example allowing us to grade the corresponding irreducible modules and Specht modules, and so on.
Motivation for KLR algebras

Motivation 1: Khovanov-Lauda and Rouquier used R_d to categorify quantum groups. More precisely, the Khovanov-Lauda theorem says that the category of finitely generated projective graded modules over the algebras R_d for all $d \in \mathbb{Z}_{\geq 0}$ categorify the negative part \mathfrak{f} of the quantum group corresponding to the Cartan matrix C.
Motivation for KLR algebras

Motivation 1: Khovanov-Lauda and Rouquier used R_d to categorify quantum groups. More precisely, the Khovanov-Lauda theorem says that the category of finitely generated projective graded modules over the algebras R_d for all $d \in \mathbb{Z}_{\geq 0}$ categorify the negative part \mathfrak{f} of the quantum group corresponding to the Cartan matrix C. This leads to a definition of 2-Kac-Moody algebras and further categorical generalizations of Kac-Moody algebras, quantum groups and modules over them...
Motivation for KLR algebras

Motivation 1: Khovanov-Lauda and Rouquier used R_d to categorify quantum groups. More precisely, the Khovanov-Lauda theorem says that the category of finitely generated projective graded modules over the algebras R_d for all $d \in \mathbb{Z}_{\geq 0}$ categorify the negative part \mathfrak{f} of the quantum group corresponding to the Cartan matrix C. This leads to a definition of 2-Kac-Moody algebras and further categorical generalizations of Kac-Moody algebras, quantum groups and modules over them...

Motivation 2: Brundan-K.’08 constructed explicit isomorphisms between the usual cyclotomic Hecke algebras H_d^Λ and the corresponding cyclotomic quotients R_d^Λ of R_d for C “of type A”:

$$H_d^\Lambda \cong R_d^\Lambda(C).$$
Motivation for KLR algebras

Motivation 1: Khovanov-Lauda and Rouquier used R_d to categorify quantum groups. More precisely, the Khovanov-Lauda theorem says that the category of finitely generated projective graded modules over the algebras R_d for all $d \in \mathbb{Z}_{\geq 0}$ categorify the negative part \mathfrak{f} of the quantum group corresponding to the Cartan matrix C. This leads to a definition of 2-Kac-Moody algebras and further categorical generalizations of Kac-Moody algebras, quantum groups and modules over them...

Motivation 2: Brundan-K.'08 constructed explicit isomorphisms between the usual *cyclotomic Hecke algebras* H_d^Λ and the corresponding *cyclotomic quotients* R_d^Λ of R_d for C “of type A”:

$$H_d^\Lambda \cong R_d^\Lambda(C).$$

This sheds some new light on the classical representation theory of Hecke algebras and symmetric groups, for example allowing us to grade the corresponding irreducible modules and Specht modules, study *graded decomposition numbers*, and so on.
The cyclotomic Hecke algebra H^Λ_d depends on the parameter $q \in F^\times$.

Let e be the smallest positive integer such that $1 + q + \cdots + q^{e-1} = 0$, set $e := 0$ if no such integer exists.

E.g. if $q = 1$, then $e = \text{char } F$.

Theorem (Brundan-K.'08) Let the Cartan matrix C be of type $C := \begin{cases} A_\infty & \text{if } e = 0, \\ A^{(1)}_{e-1} & \text{if } e > 0. \end{cases}$ Then $H^\Lambda_d \cong R^\Lambda_d$. So representation theory of $R^\Lambda_d(A_\infty)$ is equivalent to representation theory of affine Hecke algebras in characteristic zero (or with generic parameter), while representation theory of $R^\Lambda_d(A^{(1)}_{e-1})$ is equivalent to modular representation theory in "characteristic e."
The cyclotomic Hecke algebra H^Λ_d depends on the parameter $q \in F^\times$. Let e be the smallest positive integer such that

$$1 + q + \cdots + q^{e-1} = 0,$$

set $e := 0$ if no such integer exists.
The cyclotomic Hecke algebra H_d^Λ depends on the parameter $q \in F^\times$. Let e be the smallest positive integer such that

$$1 + q + \cdots + q^{e-1} = 0,$$

set $e := 0$ if no such integer exists. E.g. if $q = 1$, then $e = \text{char } F$.

Theorem (Brundan-K.'08)

Let the Cartan matrix C be of type A_∞ if $e = 0$, $A_1^{(1)} e - 1$ if $e > 0$. Then $H_d^\Lambda \cong R_d$. So representation theory of $R_d(A_\infty)$ is equivalent to representation theory of affine Hecke algebras in characteristic zero (or with generic parameter), while representation theory of $R_d(A_1^{(1)} e - 1)$ is equivalent to modular representation theory in "characteristic $e".
The cyclotomic Hecke algebra H_d^Λ depends on the parameter $q \in F^\times$. Let e be the smallest positive integer such that

$$1 + q + \cdots + q^{e-1} = 0,$$

set $e := 0$ if no such integer exists. E.g. if $q = 1$, then $e = \text{char} F$.

Theorem (Brundan-K.’08)

Let the Cartan matrix C be of type

$$C := \begin{cases}
 A_\infty & \text{if } e = 0, \\
 A^{(1)}_{e-1} & \text{if } e > 0.
\end{cases}$$

*Then $H_d^\Lambda \cong R_d^\Lambda$.***
The cyclotomic Hecke algebra H^Λ_d depends on the parameter $q \in F^\times$. Let e be the smallest positive integer such that

$$1 + q + \cdots + q^{e-1} = 0,$$

set $e := 0$ if no such integer exists. E.g. if $q = 1$, then $e = \text{char } F$.

Theorem (Brundan-K.'08)

Let the Cartan matrix C be of type

$$C := \begin{cases} A_\infty & \text{if } e = 0, \\ A_{e-1}^{(1)} & \text{if } e > 0. \end{cases}$$

Then $H^\Lambda_d \cong R^\Lambda_d$.

So representation theory of $R_d(A_\infty)$ is equivalent to representation theory of affine Hecke algebras in characteristic zero (or with generic parameter), while representation theory of $R_d(A_{e-1}^{(1)})$ is equivalent to modular representation theory in “characteristic e”.
One should think about representation theory of $R_d(C)$ as representation theory of symmetric group S_d (and more generally the corresponding affine Hecke algebra H_d) “in characteristic C”.

Goal: classify the irreducible modules over $R_d(C)$ for the Cartan matrix C of finite type. Assume from now that C is of finite type ($A_\infty, B_\infty, C_\infty$ and D_∞ are also allowed). (It was noticed by Khovanov and Lauda that irreducible R_d-modules are always finite dimensional.)
One should think about representation theory of $R_d(C)$ as representation theory of symmetric group S_d (and more generally the corresponding affine Hecke algebra H_d) “in characteristic C”.

For example representation theory of $S_d = H_d^\Lambda_0$ “in characteristic E_8” is representation theory of $R_d^\Lambda_0(E_8)$ which is contained in representation theory of $R_d(E_8)$ just like representation theory of S_d is contained in representation theory of the corresponding (degenerate) affine Hecke algebra H_d.

Goal: classify the irreducible modules over $R_d(C)$ for the Cartan matrix C of finite type.

Assume from now that C is of finite type (A_∞, B_∞, C_∞ and D_∞ are also allowed). (It was noticed by Khovanov and Lauda that irreducible R_d-modules are always finite dimensional.)
One should think about representation theory of $R_d(C)$ as representation theory of symmetric group S_d (and more generally the corresponding affine Hecke algebra H_d) “in characteristic C”.

For example representation theory of $S_d = H_d^{\lambda_0}$ “in characteristic E_8” is representation theory of $R_d^{\lambda_0}(E_8)$ which is contained in representation theory of $R_d(E_8)$ just like representation theory of S_d is contained in representation theory of the corresponding (degenerate) affine Hecke algebra H_d.

Goal: classify the irreducible modules over $R_d(C)$ for the Cartan matrix C of finite type.
One should think about representation theory of $R_d(C)$ as representation theory of symmetric group S_d (and more generally the corresponding affine Hecke algebra H_d) “in characteristic C”. For example representation theory of $S_d = H_d^{\Lambda_0}$ “in characteristic E_8” is representation theory of $R_d^{\Lambda_0}(E_8)$ which is contained in representation theory of $R_d(E_8)$ just like representation theory of S_d is contained in representation theory of the corresponding (degenerate) affine Hecke algebra H_d.

Goal: classify the irreducible modules over $R_d(C)$ for the Cartan matrix C of finite type.

Assume from now that C is of finite type (A_∞, B_∞, C_∞ and D_∞ are also allowed).
One should think about representation theory of $R_d(C)$ as representation theory of symmetric group S_d (and more generally the corresponding affine Hecke algebra H_d) “in characteristic C”.

For example representation theory of $S_d = H_d^{\Lambda_0}$ “in characteristic E_8” is representation theory of $R_d^{\Lambda_0}(E_8)$ which is contained in representation theory of $R_d(E_8)$ just like representation theory of S_d is contained in representation theory of the corresponding (degenerate) affine Hecke algebra H_d.

Goal: classify the irreducible modules over $R_d(C)$ for the Cartan matrix C of finite type.

Assume from now that C is of finite type (A_∞, B_∞, C_∞ and D_∞ are also allowed).

(It was noticed by Khovanov and Lauda that irreducible R_d-modules are always finite dimensional.)
Let V be a finite dimensional R_α-module and $i \in W^\alpha$.

Word theory (think *weight theory*)!
Let V be a finite dimensional R_α-module and $i \in W^\alpha$. We refer to $V_i := e(i)V$ as the i-word space of V.

To be able to speak of a highest word, pick any total order on I. This induces lexicographic order "\leq" on the words.

Theorem: The isomorphism class of an irreducible R_α-module L is determined by the highest word of L.

Notation: if i is the highest word of an irreducible R_α-module L, we denote L by $L(i)$.
Let V be a finite dimensional R_α-module and $i \in W^\alpha$. We refer to $V_i := e(i)V$ as the i-word space of V. We have word space decomposition:

$$V = \bigoplus_{i \in W^\alpha} V_i.$$
Let V be a finite dimensional R_α-module and $i \in W^\alpha$. We refer to $V_i := e(i)V$ as the i-word space of V. We have word space decomposition:

$$V = \bigoplus_{i \in W^\alpha} V_i.$$

To be able to speak of a highest word, pick any total order on I. This induces lexicographic order "≤" on the words.
Word theory (think *weight theory*!)

Let V be a finite dimensional R_α-module and $i \in W^\alpha$. We refer to

$$V_i := e(i) V$$

as the *i-word space of V*. We have *word space decomposition*:

$$V = \bigoplus_{i \in W^\alpha} V_i.$$

To be able to speak of a *highest word*, pick any total order on I. This induces *lexicographic order* “\leq” on the words.

Theorem

The isomorphism class of an irreducible R_α-module L is determined by the highest word of L.
Let V be a finite dimensional R_α-module and $i \in W^\alpha$. We refer to

$$V_i := e(i)V$$

as the i-word space of V. We have word space decomposition:

$$V = \bigoplus_{i \in W^\alpha} V_i.$$

To be able to speak of a highest word, pick any total order on I. This induces lexicographic order “\leq” on the words.

Theorem

The isomorphism class of an irreducible R_α-module L is determined by the highest word of L.

Notation: if i is the highest word of an irreducible R_α-module L, we denote L by $L(i)$.
A word \(i \in W^\alpha \) is called \textit{dominant} if and only if it occurs as a highest word of some (irreducible) \(R_\alpha \)-module. The set of all dominant words in \(W^\alpha \) is denoted by \(W^\alpha_+ \).
A word \(i \in \mathbf{W}^\alpha \) is called *dominant* if and only if it occurs as a highest word of some (irreducible) \(R^\alpha \)-module. The set of all dominant words in \(\mathbf{W}^\alpha \) is denoted by \(\mathbf{W}^\alpha_+ \).

So the theorem above can be interpreted as the statement that

\[\{ L(i) \mid i \in \mathbf{W}^\alpha_+ \} \]

is a complete and irredundant set of irreducible \(R^\alpha \)-modules.
A word \(i \in W^\alpha \) is called *dominant* if and only if it occurs as a highest word of some (irreducible) \(R_\alpha \)-module. The set of all dominant words in \(W^\alpha \) is denoted by \(W_\alpha^+ \).

So the theorem above can be interpreted as the statement that

\[
\{ L(i) \mid i \in W_\alpha^+ \}
\]

is a complete and irredundant set of irreducible \(R_\alpha \)-modules.

The goal now is to describe the set of dominant words and to construct the simple modules as heads of certain standard modules.
A word $i \neq \emptyset$ is called a Lyndon word if it is lexicographically smaller than all its proper right factors.
A word $i \neq \emptyset$ is called a Lyndon word if it is lexicographically smaller than all its proper right factors.

Classical fact: every word i has a unique factorization

$$i = i^{(1)}i^{(2)}\ldots i^{(k)}$$

such that $i^{(1)} \geq i^{(2)} \geq \cdots \geq i^{(k)}$ are Lyndon words. This is called the *canonical factorization* of i.
A word $i \neq \emptyset$ is called a *Lyndon word* if it is lexicographically smaller than all its proper right factors.

Classical fact: every word i has a unique factorization

$$i = i^{(1)}i^{(2)}\ldots i^{(k)}$$

such that $i^{(1)} \geq i^{(2)} \geq \cdots \geq i^{(k)}$ are Lyndon words. This is called the *canonical factorization* of i.

Theorem

Let $i \in \mathcal{W}_\alpha$ and

$$i = i^{(1)}i^{(2)}\ldots i^{(k)}$$

be the canonical factorization of i. Then i is dominant if and only if each $i^{(k)}$ is dominant.
A word $i \neq \emptyset$ is called a Lyndon word if it is lexicographically smaller than all its proper right factors.

Classical fact: every word i has a unique factorization

$$i = i^{(1)}i^{(2)} \ldots i^{(k)}$$

such that $i^{(1)} \geq i^{(2)} \geq \cdots \geq i^{(k)}$ are Lyndon words. This is called the *canonical factorization* of i.

Theorem

Let $i \in W^\alpha$ and

$$i = i^{(1)}i^{(2)} \ldots i^{(k)}$$

be the canonical factorization of i. Then i is dominant if and only if each $i^{(k)}$ is dominant.

Thus we are reduced to describing only dominant Lyndon words, which we call *minuscule* words.
The following follows from Lalonde-Ram’95 and Leclerc’04:

Theorem

(i) There is a minuscule word in W_{α} if and only if $\alpha \in \Phi^+$, in which case there is exactly one minuscule word in W_{α}. Denote this word by i_{α}.

Thus $\Phi^+ \rightarrow \{\text{minuscule words}\}$, $\beta \mapsto i_{\beta}$ is a bijection between the set of positive roots and the set of all minuscule words.

(ii) Let $\beta \in \Phi^+$. Then i_{β} is the smallest element among W_{β}^+.

(iii) Let $\beta \in \Phi^+$ and $C(\beta) = \{(\beta_1, \beta_2) \in \Phi^+ \times \Phi^+ | \beta_1 + \beta_2 = \beta, i_{\beta_1} < i_{\beta_2}\}$.

Then $i_{\beta} = \max\{i_{\beta_1} i_{\beta_2} | (\beta_1, \beta_2) \in C(\beta)\}$.

Minuscule words
The following follows from Lalonde-Ram’95 and Leclerc’04:

(i) There is a minuscule word in W_α if and only if $\alpha \in \Phi^+$, in which case there is exactly one minuscule word in W_α. Denote this word by i_α.

Thus $\Phi^+ \to \{\text{minuscule words}\}$, $\beta \mapsto i_\beta$ is a bijection between the set of positive roots and the set of all minuscule words.

(ii) Let $\beta \in \Phi^+$. Then i_β is the smallest element among W^β.

(iii) Let $\beta \in \Phi^+$ and $C(\beta) = \{(\beta_1, \beta_2) \in \Phi^+ \times \Phi^+ | \beta_1 + \beta_2 = \beta, i_\beta_1 < i_\beta_2\}$.

Then $i_\beta = \max\{i_\beta_1, i_\beta_2 | (\beta_1, \beta_2) \in C(\beta)\}$.
Minuscule words

The following follows from Lalonde-Ram’95 and Leclerc’04:

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) There is a minuscule word in \mathcal{W}^α if and only if $\alpha \in \Phi^+$, in which case there is exactly one minuscule word in \mathcal{W}^α.</td>
</tr>
</tbody>
</table>
Minuscule words

The following follows from Lalonde-Ram’95 and Leclerc’04:

Theorem

(i) *There is a minuscule word in* \(W^\alpha \) \(*if and only if* \(\alpha \in \Phi^+ \), in which case there is exactly one minuscule word in* \(W^\alpha \). *Denote this word by* \(i_\alpha \).
Minuscule words

The following follows from Lalonde-Ram’95 and Leclerc’04:

Theorem

(i) There is a minuscule word in W^α if and only if $\alpha \in \Phi^+$, in which case there is exactly one minuscule word in W^α. Denote this word by i_α. Thus

$$\Phi^+ \rightarrow \{\text{minuscule words}\}, \ \beta \mapsto i_\beta$$

is a bijection between the set of positive roots and the set of all minuscule words.
Minuscule words

The following follows from Lalonde-Ram’95 and Leclerc’04:

Theorem

(i) There is a minuscule word in W^α if and only if $\alpha \in \Phi^+$, in which case there is exactly one minuscule word in W^α. Denote this word by i_α. Thus

$$\Phi^+ \to \{\text{minuscule words}\}, \beta \mapsto i_\beta$$

is a bijection between the set of positive roots and the set of all minuscule words.

(ii) Let $\beta \in \Phi^+$. Then i_β is the smallest element among W^β_+.
Minuscule words

The following follows from Lalonde-Ram’95 and Leclerc’04:

Theorem

(i) There is a minuscule word in W^α if and only if $\alpha \in \Phi^+$, in which case there is exactly one minuscule word in W^α. Denote this word by i_α. Thus

$$\Phi^+ \rightarrow \{\text{minuscule words}\}, \beta \mapsto i_\beta$$

is a bijection between the set of positive roots and the set of all minuscule words.

(ii) Let $\beta \in \Phi^+$. Then i_β is the smallest element among W^β.

(iii) Let $\beta \in \Phi^+$ and

$$C(\beta) = \{ (\beta_1, \beta_2) \in \Phi^+ \times \Phi^+ \mid \beta_1 + \beta_2 = \beta, \ i_{\beta_1} < i_{\beta_2} \}.$$ Then $i_\beta = \max\{i_{\beta_1} i_{\beta_2} \mid (\beta_1, \beta_2) \in C(\beta)\}$.

Cuspidal modules

A minuscule (or cuspidal) module is an irreducible module of the form $L(i)$ for a minuscule i.
Cuspidal modules

A minuscule (or cuspidal) module is an irreducible module of the form $L(i)$ for a minuscule i. Thus the minuscule modules are exactly $\{ L(i_\beta) \mid \beta \in \Phi^+ \}$.
A *minuscule* (or *cuspidal*) module is an irreducible module of the form $L(i)$ for a minuscule i. Thus the minuscule modules are exactly $\{L(i_\beta) \mid \beta \in \Phi^+\}$.

The idea now is that minuscule modules should be easy to construct explicitly and then other irreducible modules could be constructed out of them using induction (hence the competing term “cuspidal”).
Cuspidal modules

A *minuscule* (or *cuspidal*) module is an irreducible module of the form $L(i)$ for a minuscule i. Thus the minuscule modules are exactly $\{L(i_\beta) \mid \beta \in \Phi^+\}$.

The idea now is that minuscule modules should be easy to construct explicitly and then other irreducible modules could be constructed out of them using induction (hence the competing term “cuspidal”).

What we were doing so far applied to an arbitrary ordering of I (and so we obtained $|I|!$ different parametrizations of irreducible modules!),
A minuscule (or cuspidal) module is an irreducible module of the form $L(i)$ for a minuscule i. Thus the minuscule modules are exactly $\{L(i_\beta) \mid \beta \in \Phi^+\}$.

The idea now is that minuscule modules should be easy to construct explicitly and then other irreducible modules could be constructed out of them using induction (hence the competing term “cuspidal”).

What we were doing so far applied to an arbitrary ordering of I (and so we obtained $|I|!$ different parametrizations of irreducible modules!), but for the construction of minuscule modules it is convenient to work with an appropriate natural ordering of the simple roots.
Cuspidal modules

A *minuscule* (or *cuspidal*) module is an irreducible module of the form $L(i)$ for a minuscule i. Thus the minuscule modules are exactly $\{L(i_\beta) \mid \beta \in \Phi^+\}$.

The idea now is that minuscule modules should be easy to construct explicitly and then other irreducible modules could be constructed out of them using induction (hence the competing term “cuspidal”).

What we were doing so far applied to an arbitrary ordering of I (and so we obtained $|I|!$ different parametrizations of irreducible modules!), but for the construction of minuscule modules it is convenient to work with an appropriate *natural* ordering of the simple roots.

E.g. if you choose one of the two natural orderings in type A_n:

$$1 < 2 < \cdots < n \quad \text{or} \quad 1 > 2 > \cdots > n$$

then the minuscule modules are just one-dimensional and they correspond to Zelevinsky segments.
Originally, we were able to construct the miniscule modules in all types other than E_8 and F_4 (for some specific natural choice of the ordering on I). In type E_8 we could construct them for all but 12 positive positive roots.

Fortunately, this issue has been resolved recently by Hill, Melvin, and Mondragon, who were able to construct all cuspidal modules for certain natural orderings on I. A special case of their result which improves our work in type E_8 is

Theorem (Hill-Melvin-Mondragon'09)

In simply laced types (ADE), there is an order on I, for which all minuscule modules are homogeneous, and hence can be explicitly constructed using K.-Ram'08.
Originally, we were able to construct the miniscule modules in all types other than E_8 and F_4 (for some specific natural choice of the ordering on I). In type E_8 we could construct them for all but 12 positive positive roots. Fortunately, this issues has been resolved recently by Hill, Melvin, and Mondragon, who were able to construct all cuspidal modules for certain natural orderings on I.
Originally, we were able to construct the miniscule modules in all types other than E_8 and F_4 (for some specific natural choice of the ordering on I). In type E_8 we could construct them for all but 12 positive positive roots. Fortunately, this issue has been resolved recently by Hill, Melvin, and Mondragon, who were able to construct all cuspidal modules for certain natural orderings on I. A special case of their result which improves our work in type E_8 is

Theorem (Hill-Melvin-Mondragon’09)

In simply laced types (ADE), there is an order on I, for which all minuscule modules are homogeneous, and hence can be explicitly constructed using K.-Ram’08.
Let $\alpha, \beta \in Q_+$. There is an obvious (non-unital) algebra embedding of $R_\alpha \otimes R_\beta$ into the $R_{\alpha+\beta}$ mapping $e(i) \otimes e(j)$ to $e(ij)$.
Let $\alpha, \beta \in Q_+$. There is an obvious (non-unital) algebra embedding of $R_\alpha \otimes R_\beta$ into the $R_{\alpha+\beta}$ mapping $e(i) \otimes e(j)$ to $e(ij)$. The image of the identity element of $R_\alpha \otimes R_\beta$ under this map is

$$e_{\alpha,\beta} = \sum_{i \in W^\alpha, j \in W^\beta} e(ij).$$
Let $\alpha, \beta \in Q_+$. There is an obvious (non-unital) algebra embedding of $R_\alpha \otimes R_\beta$ into the $R_{\alpha+\beta}$ mapping $e(i) \otimes e(j)$ to $e(ij)$. The image of the identity element of $R_\alpha \otimes R_\beta$ under this map is

$$e_{\alpha,\beta} = \sum_{i \in W^\alpha, j \in W^\beta} e(ij).$$

Consider the functor

$$\text{Ind}_{\alpha,\beta}^{\alpha+\beta} := R_{\alpha+\beta} e_{\alpha,\beta} \otimes R_\alpha \otimes R_\beta : R_\alpha \otimes R_\beta\text{-Mod} \to R_{\alpha+\beta}\text{-Mod}.$$
Let $\alpha, \beta \in Q_+$. There is an obvious (non-unital) algebra embedding of $R_\alpha \otimes R_\beta$ into the $R_{\alpha+\beta}$ mapping $e(i) \otimes e(j)$ to $e(ij)$. The image of the identity element of $R_\alpha \otimes R_\beta$ under this map is

$$e_{\alpha, \beta} = \sum_{i \in W^\alpha, j \in W^\beta} e(ij).$$

Consider the functor

$$\text{Ind}_{\alpha, \beta}^{\alpha+\beta} := R_{\alpha+\beta} e_{\alpha, \beta} \otimes R_\alpha \otimes R_\beta \otimes R_{\alpha+\beta} : R_\alpha \otimes R_\beta\text{-Mod} \to R_{\alpha+\beta}\text{-Mod}.$$

For $\alpha, \beta \in Q_+$, $M \in \text{Rep}(R_\alpha)$ and $N \in \text{Rep}(R_\beta)$, we denote

$$M \circ N := \text{Ind}_{\alpha, \beta}^{\alpha+\beta} (M \boxtimes N).$$
Constructing all irreducible modules

Let $i \in W^\alpha_+$. We want to construct $L(i)$.

Write the canonical factorization of i:

$$i = i^{(1)} i^{(2)} \cdots i^{(k)},$$

i.e. $i^{(1)} \geq i^{(2)} \geq \cdots \geq i^{(k)}$ are minuscule words.

Define the standard module of highest weight i:

$$\Delta(i) := L(i^{(1)}) \circ \cdots \circ L(i^{(k)}).$$

Theorem

Let $\alpha \in Q^+, i \in W^\alpha_+$, and $\Delta(i)$ be the standard R^α-module. Then:

(i) The highest word of $\Delta(i)$ is i.

(ii) $\Delta(i)$ has an irreducible head $L(i)$.

(iii) (Generalized Kato) If $i = j^n$ for a good Lyndon word j, then $L(i) = \Delta(i)$.
Constructing all irreducible modules

Let $i \in W^\alpha_+$. We want to construct $L(i)$. Write the canonical factorization of i:

$$i = i^{(1)}i^{(2)} \ldots i^{(k)},$$

i.e. $i^{(1)} \geq i^{(2)} \geq \ldots \geq i^{(k)}$ are minuscule words.
Let $\mathbf{i} \in \mathbf{W}_+^\alpha$. We want to construct $L(\mathbf{i})$. Write the canonical factorization of \mathbf{i}:

$$\mathbf{i} = \mathbf{i}^{(1)}\mathbf{i}^{(2)} \ldots \mathbf{i}^{(k)},$$

i.e. $\mathbf{i}^{(1)} \geq \mathbf{i}^{(2)} \geq \cdots \geq \mathbf{i}^{(k)}$ are minuscule words. Define the *standard module* of highest weight \mathbf{i}:

$$\Delta(\mathbf{i}) := L(\mathbf{i}^{(1)}) \circ \cdots \circ L(\mathbf{i}^{(k)}).$$

Theorem

Let $\alpha \in \mathbb{Q}_+^\alpha$, $\mathbf{i} \in \mathbf{W}_+^\alpha$, and $\Delta(\mathbf{i})$ be the standard R_α-module. Then:

(i) The highest word of $\Delta(\mathbf{i})$ is \mathbf{i}.

(ii) $\Delta(\mathbf{i})$ has an irreducible head $L(\mathbf{i})$.

(iii) (Generalized Kato) If $\mathbf{i} = \mathbf{j} \cdot \mathbf{n}$ for a good Lyndon word \mathbf{j}, then $L(\mathbf{i}) = \Delta(\mathbf{i})$.
Constructing all irreducible modules

Let \(i \in W^\alpha_\pm \). We want to construct \(L(i) \).
Write the canonical factorization of \(i \):
\[
i = i^{(1)} i^{(2)} \ldots i^{(k)},
\]
i.e. \(i^{(1)} \geq i^{(2)} \geq \cdots \geq i^{(k)} \) are minuscule words.
Define the standard module of highest weight \(i \):
\[
\Delta(i) := L(i^{(1)}) \circ \cdots \circ L(i^{(k)}).
\]

Theorem

Let \(\alpha \in Q_+ \), \(i \in W^\alpha_\pm \), and \(\Delta(i) \) be the standard \(R_\alpha \)-module. Then:

(i) The highest word of \(\Delta(i) \) is \(i \).
(ii) \(\Delta(i) \) has an irreducible head \(L(i) \).
(iii) (Generalized Kato) If \(i = j n \) for a good Lyndon word \(j \), then \(L(i) = \Delta(i) \).
Let $\mathbf{i} \in \mathbf{W}_+^\alpha$. We want to construct $L(\mathbf{i})$. Write the canonical factorization of \mathbf{i}:

$$\mathbf{i} = \mathbf{i}^{(1)} \mathbf{i}^{(2)} \ldots \mathbf{i}^{(k)},$$

i.e. $\mathbf{i}^{(1)} \geq \mathbf{i}^{(2)} \geq \cdots \geq \mathbf{i}^{(k)}$ are minuscule words.

Define the standard module of highest weight \mathbf{i}:

$$\Delta(\mathbf{i}) := L(\mathbf{i}^{(1)}) \circ \cdots \circ L(\mathbf{i}^{(k)}).$$

Theorem

Let $\alpha \in Q_+$, $\mathbf{i} \in \mathbf{W}_+^\alpha$, and $\Delta(\mathbf{i})$ be the standard R_α-module. Then:

(i) The highest word of $\Delta(\mathbf{i})$ is \mathbf{i}.

Constructing all irreducible modules

Let $i \in W_+^\alpha$. We want to construct $L(i)$. Write the canonical factorization of i:

$$i = i^{(1)}i^{(2)} \ldots i^{(k)},$$

i.e. $i^{(1)} \geq i^{(2)} \geq \ldots \geq i^{(k)}$ are minuscule words.

Define the standard module of highest weight i:

$$\Delta(i) := L(i^{(1)}) \circ \cdots \circ L(i^{(k)}).$$

Theorem

Let $\alpha \in Q_+$, $i \in W_+^\alpha$, and $\Delta(i)$ be the standard R_α-module. Then:

(i) The highest word of $\Delta(i)$ is i.

(ii) $\Delta(i)$ has an irreducible head $L(i)$.
Constructing all irreducible modules

Let $i \in W^\alpha_+$. We want to construct $L(i)$. Write the canonical factorization of i:

$$i = i^{(1)}i^{(2)} \ldots i^{(k)},$$

i.e. $i^{(1)} \geq i^{(2)} \geq \cdots \geq i^{(k)}$ are minuscule words. Define the standard module of highest weight i:

$$\Delta(i) := L(i^{(1)}) \circ \cdots \circ L(i^{(k)}).$$

Theorem

Let $\alpha \in Q_+$, $i \in W^\alpha_+$, and $\Delta(i)$ be the standard R_α-module. Then:

(i) The highest word of $\Delta(i)$ is i.
(ii) $\Delta(i)$ has an irreducible head $L(i)$.
(iii) (Generalized Kato) If $i = j^n$ for a good Lyndon word j, then $L(i) = \Delta(i)$.
A conjecture

Conjecture

*Let C be a Cartan matrix of finite type. Then the formal characters of irreducible $R_d(C)$-modules are independent of the characteristic of the ground field F.***

Remark.

A different classification of irreducible modules over KLR algebras was obtained by Lauda and Vazirani.
A conjecture

Conjecture

Let C be a Cartan matrix of finite type. Then the formal characters of irreducible $R_d(C)$-modules are independent of the characteristic of the ground field F.

Remark. A different classification of irreducible modules over KLR algebras was obtained by Lauda and Vazirani.