Computing vector bundles for modules of constant Jordan type

Shawn Baland

University of Washington, Seattle
October 26, 2014

Setup:

- p: prime number,
- k : algebraically closed field of characteristic p,
- $E=\left\langle g_{1}, \ldots, g_{r}\right\rangle \cong(\mathbb{Z} / p)^{r}$: elementary abelian p-group of rank r,
- set $X_{i}=g_{i}-1 \in k E$.

Fact: Each $X_{i}^{p}=0$ since k has characteristic p, and we have

$$
k E \cong k\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{p}, \ldots, t_{r}^{p}\right), \quad X_{i} \mapsto \overline{t_{i}}
$$

So $k E$ is a local ring, and the X_{i} generate $\operatorname{Rad}(k E)$.

- k : algebraically closed field of characteristic p,
- $E=\left\langle g_{1}, \ldots, g_{r}\right\rangle$: elem. abel. p-group of rank r,
- $X_{i}=g_{i}-1$,
- $k E \cong k\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{p}, \ldots, t_{r}^{p}\right), \quad X_{i} \mapsto \overline{t_{i}}$.

In fact, the X_{i} are a basis for $\operatorname{Rad}(k E) / \operatorname{Rad}^{2}(k E)$. We identify the latter with $\mathbb{A}^{r}(k)$ as a k-vector space via

$$
\alpha=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \mapsto \lambda_{1} X_{1}+\cdots+\lambda_{r} X_{r}=: X_{\alpha} .
$$

Fact: Each $X_{\alpha}^{p}=0$, so $\left(1+X_{\alpha}\right)^{p}=1$.
Hence if $\alpha \neq 0$, then $k\left\langle 1+X_{\alpha}\right\rangle \subseteq k E$ is isomorphic to $k(\mathbb{Z} / p)$. These are called cyclic shifted subgroups of $k E$.

- $E=\left\langle g_{1}, \ldots, g_{r}\right\rangle, \quad X_{i}=g_{i}-1$,
- for $\alpha=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{A}^{r}(k), X_{\alpha}:=\lambda_{1} X_{1}+\cdots+\lambda_{r} X_{r}$,
- $X_{\alpha}^{p}=0$.

If M is a finite dimensional $k E$-module and $\alpha \neq 0$, the Jordan canonical form of X_{α} acting on M consists of Jordan blocks with eigenvalues zero and lengths at most p.

Let

$$
\operatorname{JType}\left(X_{\alpha}, M\right)=[p]^{a_{p}}[p-1]^{a_{p-1}} \ldots[1]^{a_{1}}
$$

where X_{α} acts on M with a_{j} Jordan blocks of length j.
This is a partition of $\operatorname{dim}_{k}(M)$ and gives the isomorphism type of $M \downarrow_{k\left\langle 1+X_{\alpha}\right\rangle}$ as a $k(\mathbb{Z} / p)$-module.

- $E=\left\langle g_{1}, \ldots, g_{r}\right\rangle, X_{i}=g_{i}-1$,
- For $\alpha=\left(\lambda_{1}, \ldots, \lambda_{r}\right), X_{\alpha}:=\lambda_{1} X_{1}+\cdots+\lambda_{r} X_{r}$,
- JType $\left(X_{\alpha}, M\right)=[p]^{a_{p}}[p-1]^{a_{p-1}} \ldots[1]^{a_{1}}$.

Carlson and Dade pioneered the study of $k E$-modules via their restrictions to cyclic shifted subgroups in the 1970s. This led to the theory of support varieties for modular group algebras and finite group schemes.

Definition (Carlson, Friedlander, Pevtsova 2008)

A finite dimensional $k E$-module M has constant Jordan type if the partition JType $\left(X_{\alpha}, M\right)$ is independent of α.

These form a class of modules closed under direct sums, direct summands, tensor products, k-linear duals and syzygies.

Great news: Modules of constant Jordan type give rise to vector bundles on \mathbb{P}^{r-1} in a natural way!

Let $Y_{i}=X_{i}^{*}$, the element dual to X_{i} in $\left(\mathbb{A}^{r}\right)^{*}$.
Then $\mathbb{P}^{r-1}=\operatorname{Proj} k\left[Y_{1}, \ldots, Y_{r}\right]$.
For $n \in \mathbb{Z}$, Friedlander and Pevtsova define the linear operator

$$
\begin{aligned}
\theta_{M}: M \otimes_{k} \mathcal{O}_{\mathbb{P}^{r-1}}(n) & \longrightarrow M \otimes_{k} \mathcal{O}_{\mathbb{P}^{r-1}}(n+1) \\
m \otimes f & \longmapsto \sum X_{i} m \otimes Y_{i} f .
\end{aligned}
$$

For each non-zero $\alpha=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{A}^{r}$, the fibre of θ_{M} at $\bar{\alpha}=\left[\lambda_{1}: \cdots: \lambda_{r}\right] \in \mathbb{P}^{r-1}$ is the linear map $X_{\alpha}: M \rightarrow M$.

$$
\begin{aligned}
\theta_{M}: M \otimes_{k} \mathcal{O}_{\mathbb{P}^{r-1}}(n) & \longrightarrow M \otimes_{k} \mathcal{O}_{\mathbb{P}^{r-1}}(n+1) \\
m \otimes f & \longmapsto \sum X_{i} m \otimes Y_{i} f
\end{aligned}
$$

Definition (Benson, Pevtsova)

For $1 \leq i \leq p$, define the subquotients

$$
\mathcal{F}_{i}(M)=\frac{\operatorname{Ker} \theta_{M} \cap \operatorname{Im} \theta_{M}^{i-1}}{\operatorname{Ker} \theta_{M} \cap \operatorname{Im} \theta_{M}^{i}}
$$

of $M \otimes_{k} \mathcal{O}_{\mathbb{P}^{r-1}}$. This assignment is functorial in M.
Proposition (Benson, Pevtsova)
M has constant Jordan type $[p]^{a_{p}} \ldots[1]^{a_{1}}$ if and only if $\mathcal{F}_{i}(M)$ is a vector bundle of rank a_{i} on \mathbb{P}^{r-1} for all i.

$$
\mathcal{F}_{i}(M)=\frac{\operatorname{Ker} \theta_{M} \cap \operatorname{Im} \theta_{M}^{i-1}}{\operatorname{Ker} \theta_{M} \cap \operatorname{Im} \theta_{M}^{i}}
$$

Proof idea.
The fibre of $\mathcal{F}_{i}(M)$ at $\bar{\alpha} \in \mathbb{P}^{r-1}$ is

$$
\frac{\operatorname{Ker}\left(X_{\alpha}, M\right) \cap \operatorname{Im}\left(X_{\alpha}^{i-1}, M\right)}{\operatorname{Ker}\left(X_{\alpha}, M\right) \cap \operatorname{Im}\left(X_{\alpha}^{i}, M\right)},
$$

the dimension of which is the number of Jordan blocks of length i in the action of X_{α} on M.

Fact: Not much is known about which sorts of vector bundles do/don't exist on \mathbb{P}^{n}.

Idea: Try to find relationships between $\mathcal{F}_{i}(M)$ and the internal structure of M.

Definition (Carlson, Friedlander, Suslin)

A $k E$-module M has the equal images property if $\operatorname{Im}\left(X_{\alpha}, M\right)$ is independent of the choice of non-zero $\alpha \in \mathbb{A}^{r}(k)$. In this case we have $\operatorname{Im}\left(X_{\alpha}, M\right)=\operatorname{Rad}(M)$ for all α.

Proposition (Carlson, Friendlander, Suslin)

If M has the equal images property, then M has constant Jordan type.

Until further notice, restrict to the case $r=2$, i.e., $E \cong \mathbb{Z} / p \times \mathbb{Z} / p$.

Definition (Carlson, Friedlander, Suslin)

Let M be a $k E$-module and S a cofinite subset of $\mathbb{P}^{1}(k)$. Set

$$
{ }_{s} M=\sum_{\bar{\alpha} \in S} \operatorname{Ker}\left(X_{\alpha}, M\right) .
$$

The generic kernel of M is defined to be the submodule

$$
\mathfrak{K}(M)=\bigcap_{s \subseteq \mathbb{P}^{1}(k) \text { cofinite }} s M
$$

of M.
Remark: There always exists a cofinite $S \subseteq \mathbb{P}^{1}(k)$ for which $\mathfrak{K}(M)=s M$.

Definition (Carlson, Friedlander, Suslin)

In any rank r, a $k E$-module M has constant j-rank if $\operatorname{rank}\left(X_{\alpha}^{j}, M\right)$ is independent of the choice of non-zero point $\alpha \in \mathbb{A}^{r}(k)$.

Theorem (Carlson, Friedlander, Suslin)
Let M be a $k E$-module in rank two.

1. The generic kernel $\mathfrak{K}(M)$ has the equal images property.
2. If N is any submodule of M having the equal images property, then $N \subseteq \mathfrak{K}(M)$.
3. If M has constant 1 -rank, then

$$
\mathfrak{K}(M)=\mathbb{P}^{1}(k) M=\sum_{\bar{\alpha} \in \mathbb{P}^{1}(k)} \operatorname{Ker}\left(X_{\alpha}, M\right) .
$$

Set $J=\operatorname{Rad}(k E)$ and consider the filtration

$$
\begin{aligned}
0=J^{p} \mathfrak{K}(M) \subseteq \cdots \subseteq J \mathfrak{K}(M) \subseteq \mathfrak{K}(M) \subseteq J^{-1} \mathfrak{K}(M) \subseteq \cdots \\
\cdots \subseteq J^{-p+1} \mathfrak{K}(M)=M
\end{aligned}
$$

Here, $J^{-i} \mathfrak{K}(M)=\left\{m \in M \mid J^{i} m \subseteq \mathfrak{K}(M)\right\}$.

Proposition (B. 2012)
If M has constant 1-rank, then for any $\alpha \in \mathbb{A}^{r}(k)$ and
$i \leq \min \{j, \ell-1\}$, the number of Jordan blocks of size i in the action of X_{α} on $J^{-j} \mathfrak{K}(M) / J^{\ell} \mathfrak{K}(M)$ is equal to that on M.

Theorem (B., K. Chan, Pevtsova)

Let $r=2$. If M is a $k E$-module of constant Jordan type and $i \leq \min \{j, \ell-1\}$, then $\mathcal{F}_{i}\left(J^{-j} \mathfrak{K}(M) / J^{\ell} \mathfrak{K}(M)\right)$ is a vector bundle on $\mathbb{P}^{1}(k)$, and we have

$$
\mathcal{F}_{i}\left(J^{-j} \mathfrak{K}(M) / J^{\ell} \mathfrak{K}(M)\right) \cong \mathcal{F}_{i}(M) .
$$

Example

For $i=1$, this shows that $\mathcal{F}_{1}\left(J^{-1} \mathfrak{K}(M) / J^{2} \mathfrak{K}(M)\right) \cong \mathcal{F}_{1}(M)$.
The former has Loewy length three, regardless of the Loewy length of M.

Definition (Carlson, Friedlander, Suslin)

Fix $n>0$. The nth power generic kernel is the submodule

$$
\mathfrak{K}^{n}(M)=\bigcap_{S \subseteq \mathbb{P}^{1}(k)} \sum_{\bar{\alpha} \in S} \operatorname{Ker}\left(X_{\alpha}^{n}, M\right) .
$$

Again, there always exists a cofinite $S \subseteq \mathbb{P}^{1}(k)$ satisfying $\mathfrak{K}^{n}(M)=\sum_{\bar{\alpha} \in S} \operatorname{Ker}\left(X_{\alpha}^{n}, M\right)$.

If M has constant 1 -rank, then $\mathfrak{K}^{n}(M)$ is contained in $J^{-n+1} \mathfrak{K}(M)$, so we have inclusions

$$
\begin{array}{ccc}
\mathfrak{K}(M) \subseteq J^{-1} \mathfrak{K}(M) \subseteq J^{-2} \mathfrak{K}(M) \subseteq \cdots \subseteq J^{-p+1} \mathfrak{K}(M) \\
\cup \cup & \cup & \cup \\
\mathfrak{K}^{1}(M) \subseteq \mathfrak{K}^{2}(M) & \subseteq \mathfrak{K}^{3}(M) \quad \subseteq \cdots \subseteq \mathfrak{K}^{p}(M)=M
\end{array} .
$$

Dually, one can define the nth power generic image of M to be the submodule

$$
\Im^{n}(M)=\sum_{S \subseteq \mathbb{P}^{1}(k) \text { cofinite }} \bigcap_{\bar{\alpha} \in S} \operatorname{Im}\left(X_{\alpha}^{n}, M\right)
$$

Theorem (B., K. Chan, Pevtsova)
If M has constant Jordan type and $i \leq \min \{n-1, m-1\}$, then

$$
\mathcal{F}_{i}\left(\mathfrak{K}^{n}(M) / \mathfrak{I}^{m} \mathfrak{K}^{n}(M)\right) \cong \mathcal{F}_{i}(M)
$$

and

$$
\mathcal{F}_{i}\left(\mathfrak{K}^{n}\left(M / \mathfrak{I}^{m}(M)\right)\right) \cong \mathcal{F}_{i}(M)
$$

Example

For $i=1$, we obtain $\mathcal{F}_{1}\left(\mathfrak{K}^{2}(M) / \mathfrak{I}^{2} \mathfrak{K}^{2}(M)\right) \cong \mathcal{F}_{1}(M)$.

All of this works for arbitrary rank r !

Naively define $\mathfrak{K}^{n}(M)=\sum_{\bar{\alpha} \in \mathbb{P}^{r-1}(k)} \operatorname{Ker}\left(X_{\alpha}^{n}, M\right)$.
Then for $i \leq n-1$ and all $\bar{\alpha} \in \mathbb{P}^{r-1}(k)$ we have

$$
\frac{\operatorname{Ker}\left(X_{\alpha}, \mathfrak{K}^{n}(M)\right) \cap \operatorname{Im}\left(X_{\alpha}^{i-1}, \mathfrak{K}^{n}(M)\right)}{\operatorname{Ker}\left(X_{\alpha}, \mathfrak{K}^{n}(M)\right) \cap \operatorname{Im}\left(X_{\alpha}^{i}, \mathfrak{K}^{n}(M)\right)}=\frac{\operatorname{Ker}\left(X_{\alpha}, M\right) \cap \operatorname{Im}\left(X_{\alpha}^{i-1}, M\right)}{\operatorname{Ker}\left(X_{\alpha}, M\right) \cap \operatorname{Im}\left(X_{\alpha}^{i}, M\right)} .
$$

via the inclusion $\mathfrak{K}^{n}(M) \subseteq M$.

This is used to show that if M has constant Jordan type, then $\mathfrak{K}^{n}(M)$ has constant j-rank for all $j \leq n$.

The above two facts imply that $\mathcal{F}_{i}\left(\mathfrak{K}^{n}(M)\right)$ is a vector bundle on $\mathbb{P}^{r-1}(k)$ and that $\mathcal{F}_{i}\left(\mathfrak{K}^{n}(M)\right)=\mathcal{F}_{i}(M)$.

Thank you for your time.

