On p-permutation bimodules and equivalences between blocks of group algebras

Robert Boltje (joint work with Philipp Perepelitsky)

University of California, Santa Cruz

AMS Sectional Meeting San Francisco State University October 25–26, 2014

Throughout: F algebraically closed field of characteristic p > 0.

Throughout: F algebraically closed field of characteristic p > 0.

Conjecture (Broué ~1988) Let $A \in BI(FG)$ with abelian defect group D, set $H := N_G(D)$ and let $B \in BI(FH)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Throughout: F algebraically closed field of characteristic p > 0.

Conjecture (Broué ~1988) Let $A \in BI(FG)$ with abelian defect group D, set $H := N_G(D)$ and let $B \in BI(FH)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of *p*-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D) := \{(x, x) \mid x \in D\}.$

Throughout: F algebraically closed field of characteristic p > 0.

Conjecture (Broué ~1988) Let $A \in BI(FG)$ with abelian defect group D, set $H := N_G(D)$ and let $B \in BI(FH)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of *p*-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D) := \{(x, x) \mid x \in D\}.$

Here, $M \in {}_{FG}$ mod is called a *p*-permutation module if $\operatorname{Res}_{P}^{G}(M)$ is a permutation module for all *p*-subgroups $P \leq G$

Throughout: F algebraically closed field of characteristic p > 0.

Conjecture (Broué ~1988) Let $A \in BI(FG)$ with abelian defect group D, set $H := N_G(D)$ and let $B \in BI(FH)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of *p*-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D) := \{(x, x) \mid x \in D\}.$

Here, $M \in {}_{FG}$ mod is called a *p*-permutation module if $\operatorname{Res}_{P}^{G}(M)$ is a permutation module for all *p*-subgroups $P \leq G$ ($\iff M$ is a direct summand of a permutation module

Throughout: F algebraically closed field of characteristic p > 0.

Conjecture (Broué ~1988) Let $A \in BI(FG)$ with abelian defect group D, set $H := N_G(D)$ and let $B \in BI(FH)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of *p*-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D) := \{(x, x) \mid x \in D\}.$

Here, $M \in {}_{FG}$ mod is called a *p-permutation module* if $\operatorname{Res}_{P}^{G}(M)$ is a permutation module for all *p*-subgroups $P \leq G$ ($\iff M$ is a direct summand of a permutation module \iff each indecomposable direct summand of M has trivial source.)

Let G, H be arbitrary finite groups and $A \in Bl(FG)$, $B \in Bl(FH)$.

Let G, H be arbitrary finite groups and $A \in Bl(FG)$, $B \in Bl(FH)$.

• $T^{\Delta}(A, B) :=$ Grothendieck group, w.r.t. \oplus , of the category of *p*-permutation (A, B)-bimodules, all of whose indecomposable direct summands have twisted diagonal vertices.

Let G, H be arbitrary finite groups and $A \in Bl(FG)$, $B \in Bl(FH)$.

• $T^{\Delta}(A, B) :=$ Grothendieck group, w.r.t. \oplus , of the category of *p*-permutation (A, B)-bimodules, all of whose indecomposable direct summands have twisted diagonal vertices.

• Here, a *twisted diagonal subgroup* of $G \times H$ is a subgroup of the form

$$\Delta(P,\alpha,Q) := \{(\alpha(y),y) \mid y \in Q\},\$$

where $G \geq P \stackrel{\alpha}{\stackrel{\sim}{\leftarrow}} Q \leq H$.

Let G, H be arbitrary finite groups and $A \in Bl(FG)$, $B \in Bl(FH)$.

• $T^{\Delta}(A, B) :=$ Grothendieck group, w.r.t. \oplus , of the category of *p*-permutation (A, B)-bimodules, all of whose indecomposable direct summands have twisted diagonal vertices.

• Here, a *twisted diagonal subgroup* of $G \times H$ is a subgroup of the form

$$\Delta(P,\alpha,Q) := \{ (\alpha(y), y) \mid y \in Q \},\$$

where $G \geq P \stackrel{\alpha}{\underset{\sim}{\leftarrow}} Q \leq H$.

• \mathbb{Z} -basis of $T^{\Delta}(A, B)$: Isomorphism classes [M] of indecomposable *p*-permutation (A, B)-bimodules *M* with twisted diagonal vertices.

3. Brauer construction

3. Brauer construction

Let $P \leq G$ be a *p*-subgroup. There exists a functor $_{FG} \operatorname{mod} \to _{F[N_G(P)/P]} \operatorname{mod}, \quad M \mapsto M(P),$

where

$$M(P) := M^P / \sum_{Q < P} \operatorname{tr}^P_Q(M^Q), \quad (\operatorname{tr}^P_Q \colon M^Q \to M^P, \ m \mapsto \sum_{x \in P/Q} xm).$$

3. Brauer construction

Let $P \leq G$ be a *p*-subgroup. There exists a functor $_{FG} \operatorname{mod} \to _{F[N_G(P)/P]} \operatorname{mod}, \quad M \mapsto M(P),$

where

$$M(P) := M^P / \sum_{Q < P} \operatorname{tr}^P_Q(M^Q), \quad (\operatorname{tr}^P_Q \colon M^Q \to M^P, \ m \mapsto \sum_{x \in P/Q} xm).$$

If M = F[X] for a *G*-set *X*, then

$$F[X^P] \hookrightarrow M^P \twoheadrightarrow M(P)$$

is an isomorphism. Thus, if M is a p-permutation module then M(P) is a p-permutation module.

4. Fixed points of tensor products of bisets

4. Fixed points of tensor products of bisets

Theorem (B.-Danz, 2012) Let G, H, K be finite groups, let $_{G}X_{H}$ and $_{H}Y_{K}$ be bifree bisets, and let $\Delta(U, \varphi, W) \leq G \times K$ be a twisted diagonal subgroup. Then the canonical map

$$\coprod_{U \stackrel{\alpha}{\sim} V \stackrel{\beta}{\sim} W} X^{\Delta(U,\alpha,V)} \times_{C_{H}(V)} Y^{\Delta(V,\beta,W)} \xrightarrow{\sim} (X \times_{H} Y)^{\Delta(U,\varphi,W)}$$

is a $(C_G(U), C_K(W))$ -biset isomorphism. Here, $U \stackrel{\alpha}{\stackrel{\sim}{\leftarrow}} V \stackrel{\beta}{\stackrel{\sim}{\leftarrow}} W$ runs through all factorizations of φ through H, up to H-conjugation.

4. Fixed points of tensor products of bisets

Theorem (B.-Danz, 2012) Let G, H, K be finite groups, let $_{G}X_{H}$ and $_{H}Y_{K}$ be bifree bisets, and let $\Delta(U, \varphi, W) \leq G \times K$ be a twisted diagonal subgroup. Then the canonical map

$$\coprod_{U \stackrel{\alpha}{\sim} V \stackrel{\beta}{\sim} W} X^{\Delta(U,\alpha,V)} \times_{C_H(V)} Y^{\Delta(V,\beta,W)} \xrightarrow{\sim} (X \times_H Y)^{\Delta(U,\varphi,W)}$$

is a $(C_G(U), C_K(W))$ -biset isomorphism. Here, $U \stackrel{\alpha}{\stackrel{\sim}{\leftarrow}} V \stackrel{\beta}{\stackrel{\sim}{\leftarrow}} W$ runs through all factorizations of φ through H, up to H-conjugation.

Corollary Formula for $(M \otimes_{FH} N)(\Delta(P, \varphi, Q))$, for *p*-permutation bimodules *M* and *N* with twisted diagonal vertices.

Let $X \leq G \times H$. Then

 $k_1(X) \times k_2(X) \leq X \leq p_1(X) \times p_2(X) \leq G \times H$,

where

 $k_1(X):=\{g\in G\mid (g,1)\in X\} \quad ext{and} \quad k_2(X):=\{h\in H\mid (1,h)\in X\}\,.$

Let $X \leq G \times H$. Then

$$k_1(X) \times k_2(X) \leq X \leq p_1(X) \times p_2(X) \leq G \times H$$
,

where

 $k_1(X) := \{g \in G \mid (g, 1) \in X\} \text{ and } k_2(X) := \{h \in H \mid (1, h) \in X\}.$ Additionally, let $Y \leq H \times K$, $M \in _{FX} \text{mod}$, $N \in _{FY} \text{mod}$. Then $M \in _{FL}(X) \text{mod}_{FL}(X) \text{ and } N \in _{FL}(X) \text{mod}_{FL}(X) \text{ be}$

 $M \in F[k_1(X)] \mod F[k_2(X)]$ and $N \in F[k_1(Y)] \mod F[k_2(Y)]$, via restriction.

Let $X \leq G \times H$. Then

$$k_1(X) \times k_2(X) \leq X \leq p_1(X) \times p_2(X) \leq G \times H$$
,

where

 $\begin{aligned} &k_1(X) := \{g \in G \mid (g,1) \in X\} \quad \text{and} \quad k_2(X) := \{h \in H \mid (1,h) \in X\} \,. \end{aligned}$ Additionally, let $Y \leq H \times K$, $M \in {}_{FX} \text{mod}$, $N \in {}_{FY} \text{mod}$. Then

 $M \in {}_{F[k_1(X)]} \mathrm{mod}_{F[k_2(X)]}$ and $N \in {}_{F[k_1(Y)]} \mathrm{mod}_{F[k_2(Y)]}$,

via restriction. Thus, one can form the tensor product

$$M \otimes_{F[k_2(X) \cap k_1(Y)]} N \in {}_{F[k_1(X)]} \operatorname{mod}_{F[k_2(Y)]}.$$

Let $X \leq G \times H$. Then

$$k_1(X) \times k_2(X) \leq X \leq p_1(X) \times p_2(X) \leq G \times H$$
,

where

$$\begin{split} &k_1(X) := \{g \in G \mid (g,1) \in X\} \quad \text{and} \quad k_2(X) := \{h \in H \mid (1,h) \in X\} \,. \\ &\text{Additionally, let } Y \leq H \times K, \; M \in {}_{FX} \text{mod}, \; N \in {}_{FY} \text{mod}. \; \text{Then} \end{split}$$

 $M \in {}_{F[k_1(X)]} \operatorname{mod}_{F[k_2(X)]}$ and $N \in {}_{F[k_1(Y)]} \operatorname{mod}_{F[k_2(Y)]}$,

via restriction. Thus, one can form the tensor product

$$M \otimes_{F[k_2(X) \cap k_1(Y)]} N \in {}_{F[k_1(X)]} \operatorname{mod}_{F[k_2(Y)]}.$$

This module structure has an extension to the group

$$X*Y := \{(g,k) \in G imes K \mid \exists h \in H \colon (g,h) \in X, (h,k) \in Y\} \leq G imes K.$$

Let $X \leq G \times H$. Then

$$k_1(X) \times k_2(X) \leq X \leq p_1(X) \times p_2(X) \leq G \times H$$
,

where

$$\begin{split} &k_1(X) := \{g \in G \mid (g,1) \in X\} \quad \text{and} \quad k_2(X) := \{h \in H \mid (1,h) \in X\}. \\ &\text{Additionally, let } Y \leq H \times K, \ M \in {}_{FX} \text{mod}, \ N \in {}_{FY} \text{mod}. \ \text{Then} \end{split}$$

 $M \in {}_{F[k_1(X)]} \operatorname{mod}_{F[k_2(X)]}$ and $N \in {}_{F[k_1(Y)]} \operatorname{mod}_{F[k_2(Y)]}$,

via restriction. Thus, one can form the tensor product

$$M \otimes_{F[k_2(X) \cap k_1(Y)]} N \in {}_{F[k_1(X)]} \operatorname{mod}_{F[k_2(Y)]}.$$

This module structure has an extension to the group

 $X * Y := \{(g, k) \in G \times K \mid \exists h \in H \colon (g, h) \in X, (h, k) \in Y\} \le G \times K.$ Obtain a functor $_{FX} \mod \times _{FY} \mod \longrightarrow _{F[X * Y]} \mod.$

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in Bl(FG)$, and $B \in Bl(FH)$.

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in Bl(FG)$, and $B \in Bl(FH)$. Suppose that $\gamma \in T^{\Delta}(A, B)$ satisfies

 $\gamma \cdot_B \gamma^{\circ} = [A] \in T^{\Delta}(A, A) \text{ and } \gamma^{\circ} \cdot_A \gamma = [B] \in T^{\Delta}(B, B),$

i.e., γ is a *p*-permutation equivalence between A and B. Then:

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in Bl(FG)$, and $B \in Bl(FH)$. Suppose that $\gamma \in T^{\Delta}(A, B)$ satisfies

 $\gamma \cdot_B \gamma^{\circ} = [A] \in T^{\Delta}(A, A) \text{ and } \gamma^{\circ} \cdot_A \gamma = [B] \in T^{\Delta}(B, B),$

i.e., γ is a *p*-permutation equivalence between A and B. Then:

(a) There exists a unique constituent [M] of γ with vertex of the form $\Delta(D, \varphi, E)$, where D and E are defect groups of A and B. Moreover, M has multiplicity ± 1 . We call M the maximal module of γ .

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in Bl(FG)$, and $B \in Bl(FH)$. Suppose that $\gamma \in T^{\Delta}(A, B)$ satisfies

 $\gamma \cdot_B \gamma^\circ = [A] \in T^{\Delta}(A, A) \text{ and } \gamma^\circ \cdot_A \gamma = [B] \in T^{\Delta}(B, B),$

i.e., γ is a *p*-permutation equivalence between A and B. Then:

(a) There exists a unique constituent [M] of γ with vertex of the form $\Delta(D, \varphi, E)$, where D and E are defect groups of A and B. Moreover, M has multiplicity ± 1 . We call M the maximal module of γ .

(b) Every constituent of γ has a vertex contained in $\Delta(D, \varphi, E)$. (Uniformity) (c) Let (D, e) and (E, f) be maximal Brauer pairs of A and B, respectively, such that

$$e \cdot \gamma(\Delta(D,\varphi,E)) \cdot f \neq 0$$
.

Then, $\varphi \colon E \xrightarrow{\sim} D$ is an isomorphism between the associated *fusion systems*.

(c) Let (D, e) and (E, f) be maximal Brauer pairs of A and B, respectively, such that

$$e \cdot \gamma(\Delta(D,\varphi,E)) \cdot f \neq 0$$
.

Then, $\varphi \colon E \xrightarrow{\sim} D$ is an isomorphism between the associated *fusion* systems.

(d) The Brauer correspondents $a \in Bl(F[N_G(D)])$ of A and $b \in Bl(F[N_H(E)])$ of B are Morita equivalent via the p-permutation bimodule

$$\operatorname{Ind}_{\dots}^{N_G(D) \times N_H(E)}(e \cdot M(\Delta(D,\varphi,E)) \cdot f)$$

(e) If $(P, e_P) \leftrightarrow (Q, f_Q)$ are corresponding Brauer pairs of A and B, then

$$e_P \cdot \gamma(\Delta(P, \varphi, Q)) \cdot f_Q \in T^{\Delta}(FC_G(P)e_P, FC_H(Q)f_Q)$$

is again a *p*-permutation equivalence. (Isotopy)

(e) If $(P, e_P) \leftrightarrow (Q, f_Q)$ are corresponding Brauer pairs of A and B, then

$$e_{P} \cdot \gamma(\Delta(P, arphi, Q)) \cdot f_{Q} \in T^{\Delta}ig(\mathit{FC}_{G}(P)e_{P}, \mathit{FC}_{H}(Q)f_{Q}ig)$$

is again a *p*-permutation equivalence. (lsotopy)

(f) If $(P, e_P) \leftrightarrow (Q, f_Q)$ are corresponding self-centralizing Brauer pairs of A and B, then the associated Külshammer-Puig 2-cocycles on $N_G(P, e_P)/PC_G(P)$ and $N_H(Q, f_Q)/QC_H(Q)$ "coincide via φ ". (e) If $(P, e_P) \leftrightarrow (Q, f_Q)$ are corresponding Brauer pairs of A and B, then

$$e_{P} \cdot \gamma(\Delta(P, \varphi, Q)) \cdot f_{Q} \in T^{\Delta}(FC_{G}(P)e_{P}, FC_{H}(Q)f_{Q})$$

is again a *p*-permutation equivalence. (lsotopy)

(f) If $(P, e_P) \leftrightarrow (Q, f_Q)$ are corresponding self-centralizing Brauer pairs of A and B, then the associated Külshammer-Puig 2-cocycles on $N_G(P, e_P)/PC_G(P)$ and $N_H(Q, f_Q)/QC_H(Q)$ "coincide via φ ".

(g) The group of *p*-permutation auto-equivalences of A is finite.

Thank you!