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1. Broué’s abelian defect group conjecture

Throughout: F algebraically closed field of characteristic p > 0.

Conjecture (Broué ∼1988) Let A ∈ Bl(FG ) with abelian defect
group D, set H := NG (D) and let B ∈ Bl(FH) be the Brauer
correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a
bounded chain complex of p-permutation bimodules whose
indecomposable direct summands have vertices contained in
∆(D) := {(x , x) | x ∈ D}.

Here, M ∈ FGmod is called a p-permutation module if
ResGP (M) is a permutation module for all p-subgroups P ≤ G
( ⇐⇒ M is a direct summand of a permutation module
⇐⇒ each indecomposable direct summand of M has trivial

source.)
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1. Broué’s abelian defect group conjecture

Throughout: F algebraically closed field of characteristic p > 0.
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2. T∆(A,B)

Let G ,H be arbitrary finite groups and A ∈ Bl(FG ), B ∈ Bl(FH).

• T∆(A,B) := Grothendieck group, w.r.t. ⊕, of the category of
p-permutation (A,B)-bimodules, all of whose indecomposable
direct summands have twisted diagonal vertices.

• Here, a twisted diagonal subgroup of G × H is a subgroup of the
form

∆(P, α,Q) := {(α(y), y) | y ∈ Q} ,

where G ≥ P
α
∼←−Q ≤ H.

• Z-basis of T∆(A,B): Isomorphism classes [M] of
indecomposable p-permutation (A,B)-bimodules M with twisted
diagonal vertices.
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3. Brauer construction

Let P ≤ G be a p-subgroup. There exists a functor

FGmod→ F [NG (P)/P]mod , M 7→ M(P) ,

where

M(P) := MP/
∑
Q<P

trPQ(MQ) , (trPQ : MQ → MP , m 7→
∑

x∈P/Q

xm) .

If M = F [X ] for a G -set X , then

F [XP ] ↪→ MP � M(P)

is an isomorphism. Thus, if M is a p-permutation module then
M(P) is a p-permutation module.
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4. Fixed points of tensor products of bisets

Theorem (B.-Danz, 2012) Let G , H, K be finite groups, let GXH

and HYK be bifree bisets, and let ∆(U, ϕ,W ) ≤ G × K be a
twisted diagonal subgroup. Then the canonical map∐
U

α
∼←−V

β
∼←−W

X∆(U,α,V ) ×CH(V ) Y
∆(V ,β,W ) ∼→ (X ×H Y )∆(U,ϕ,W )

is a (CG (U),CK (W ))-biset isomorphism. Here, U
α
∼←−V

β
∼←−W

runs through all factorizations of ϕ through H, up to
H-conjugation.

Corollary Formula for (M ⊗FH N)(∆(P, ϕ,Q)), for p-permutation
bimodules M and N with twisted diagonal vertices.
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5. Generalized tensor products of bimodules

Let X ≤ G × H. Then

k1(X )× k2(X ) ≤ X ≤ p1(X )× p2(X ) ≤ G × H ,

where

k1(X ) := {g ∈ G | (g , 1) ∈ X} and k2(X ) := {h ∈ H | (1, h) ∈ X} .

Additionally, let Y ≤ H × K , M ∈ FXmod, N ∈ FY mod. Then

M ∈ F [k1(X )]modF [k2(X )] and N ∈ F [k1(Y )]modF [k2(Y )] ,

via restriction. Thus, one can form the tensor product

M ⊗F [k2(X )∩k1(Y )] N ∈ F [k1(X )]modF [k2(Y )] .

This module structure has an extension to the group

X ∗ Y := {(g , k) ∈ G×K | ∃h ∈ H : (g , h) ∈ X , (h, k) ∈ Y } ≤ G×K .

Obtain a functor FXmod× FY mod −→ F [X∗Y ]mod.
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6. Main Theorem

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups,
A ∈ Bl(FG ), and B ∈ Bl(FH).

Suppose that γ ∈ T∆(A,B)
satisfies

γ ·B γ◦ = [A] ∈ T∆(A,A) and γ◦ ·A γ = [B] ∈ T∆(B,B),

i.e., γ is a p-permutation equivalence between A and B. Then:

(a) There exists a unique constituent [M] of γ with vertex of the
form ∆(D, ϕ,E ), where D and E are defect groups of A and B.
Moreover, M has multiplicity ±1. We call M the maximal module
of γ.

(b) Every constituent of γ has a vertex contained in ∆(D, ϕ,E ).
(Uniformity)
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(c) Let (D, e) and (E , f ) be maximal Brauer pairs of A and B,
respectively, such that

e · γ(∆(D, ϕ,E )) · f 6= 0 .

Then, ϕ : E
∼→ D is an isomorphism between the associated fusion

systems.

(d) The Brauer correspondents a ∈ Bl(F [NG (D)]) of A and
b ∈ Bl(F [NH(E )]) of B are Morita equivalent via the
p-permutation bimodule

IndNG (D)×NH(E)
... (e ·M(∆(D, ϕ,E )) · f )
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(e) If (P, eP)↔ (Q, fQ) are corresponding Brauer pairs of A and
B, then

eP · γ(∆(P, ϕ,Q)) · fQ ∈ T∆
(
FCG (P)eP ,FCH(Q)fQ

)
is again a p-permutation equivalence. (Isotopy)

(f) If (P, eP)↔ (Q, fQ) are corresponding self-centralizing Brauer
pairs of A and B, then the associated Külshammer-Puig 2-cocycles
on NG (P, eP)/PCG (P) and NH(Q, fQ)/QCH(Q) ”coincide via ϕ”.

(g) The group of p-permutation auto-equivalences of A is finite.
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Thank you!


