On p-permutation bimodules and equivalences between blocks of group algebras

Robert Boltje
(joint work with Philipp Perepelitsky)
University of California, Santa Cruz

AMS Sectional Meeting
San Francisco State University
October 25-26, 2014

1. Broué's abelian defect group conjecture

1. Broué's abelian defect group conjecture

Throughout: F algebraically closed field of characteristic $p>0$.

1. Broué's abelian defect group conjecture

Throughout: F algebraically closed field of characteristic $p>0$.
Conjecture (Broué ~1988) Let $A \in B I(F G)$ with abelian defect group D, set $H:=N_{G}(D)$ and let $B \in B /(F H)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

1. Broué's abelian defect group conjecture

Throughout: F algebraically closed field of characteristic $p>0$.
Conjecture (Broué ~ 1988) Let $A \in B I(F G)$ with abelian defect group D, set $H:=N_{G}(D)$ and let $B \in B /(F H)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of p-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D):=\{(x, x) \mid x \in D\}$.

1. Broué's abelian defect group conjecture

Throughout: F algebraically closed field of characteristic $p>0$.
Conjecture (Broué ~ 1988) Let $A \in B I(F G)$ with abelian defect group D, set $H:=N_{G}(D)$ and let $B \in B l(F H)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of p-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D):=\{(x, x) \mid x \in D\}$.

Here, $M \in{ }_{F G}$ mod is called a p-permutation module if $\operatorname{Res}_{P}^{G}(M)$ is a permutation module for all p-subgroups $P \leq G$

1. Broué's abelian defect group conjecture

Throughout: F algebraically closed field of characteristic $p>0$.
Conjecture (Broué ~ 1988) Let $A \in B I(F G)$ with abelian defect group D, set $H:=N_{G}(D)$ and let $B \in B l(F H)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of p-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D):=\{(x, x) \mid x \in D\}$.

Here, $M \in{ }_{F G}$ mod is called a p-permutation module if $\operatorname{Res}_{P}^{G}(M)$ is a permutation module for all p-subgroups $P \leq G$ ($\Longleftrightarrow M$ is a direct summand of a permutation module

1. Broué's abelian defect group conjecture

Throughout: F algebraically closed field of characteristic $p>0$.
Conjecture (Broué ~ 1988) Let $A \in B I(F G)$ with abelian defect group D, set $H:=N_{G}(D)$ and let $B \in B l(F H)$ be the Brauer correspondent of A. Then A and B are derived equivalent.

Strengthening (Rickard 1996) Equivalence can be given by a bounded chain complex of p-permutation bimodules whose indecomposable direct summands have vertices contained in $\Delta(D):=\{(x, x) \mid x \in D\}$.

Here, $M \in{ }_{F G}$ mod is called a p-permutation module if $\operatorname{Res}_{P}^{G}(M)$ is a permutation module for all p-subgroups $P \leq G$ ($\Longleftrightarrow M$ is a direct summand of a permutation module
\Longleftrightarrow each indecomposable direct summand of M has trivial source.)
2. $T^{\Delta}(A, B)$

Let G, H be arbitrary finite groups and $A \in \operatorname{Bl}(F G), B \in \mathrm{Bl}(F H)$.

2. $T^{\Delta}(A, B)$

Let G, H be arbitrary finite groups and $A \in \mathrm{Bl}(F G), B \in \mathrm{Bl}(F H)$.

- $T^{\Delta}(A, B):=$ Grothendieck group, w.r.t. \oplus, of the category of p-permutation (A, B)-bimodules, all of whose indecomposable direct summands have twisted diagonal vertices.

2. $T^{\Delta}(A, B)$

Let G, H be arbitrary finite groups and $A \in \mathrm{Bl}(F G), B \in \mathrm{Bl}(F H)$.

- $T^{\Delta}(A, B):=G r o t h e n d i e c k$ group, w.r.t. \oplus, of the category of p-permutation (A, B)-bimodules, all of whose indecomposable direct summands have twisted diagonal vertices.
- Here, a twisted diagonal subgroup of $G \times H$ is a subgroup of the form

$$
\Delta(P, \alpha, Q):=\{(\alpha(y), y) \mid y \in Q\},
$$

where $G \geq P \stackrel{\alpha}{\sim} Q \leq H$.
2. $T^{\Delta}(A, B)$

Let G, H be arbitrary finite groups and $A \in \mathrm{Bl}(F G), B \in \mathrm{Bl}(F H)$.

- $T^{\Delta}(A, B):=G r o t h e n d i e c k$ group, w.r.t. \oplus, of the category of p-permutation (A, B)-bimodules, all of whose indecomposable direct summands have twisted diagonal vertices.
- Here, a twisted diagonal subgroup of $G \times H$ is a subgroup of the form

$$
\Delta(P, \alpha, Q):=\{(\alpha(y), y) \mid y \in Q\},
$$

where $G \geq P \stackrel{\alpha}{\sim} Q \leq H$.

- \mathbb{Z}-basis of $T^{\Delta}(A, B)$: Isomorphism classes [M] of indecomposable p-permutation (A, B)-bimodules M with twisted diagonal vertices.

3. Brauer construction

3. Brauer construction

Let $P \leq G$ be a p-subgroup. There exists a functor

$$
F G \bmod \rightarrow{ }_{F\left[N_{G}(P) / P\right]} \bmod , \quad M \mapsto M(P),
$$

where
$M(P):=M^{P} / \sum_{Q<P} \operatorname{tr}_{Q}^{P}\left(M^{Q}\right), \quad\left(\operatorname{tr}_{Q}^{P}: M^{Q} \rightarrow M^{P}, m \mapsto \sum_{x \in P / Q} x m\right)$.

3. Brauer construction

Let $P \leq G$ be a p-subgroup. There exists a functor

$$
F G \bmod \rightarrow{ }_{F\left[N_{G}(P) / P\right]} \bmod , \quad M \mapsto M(P),
$$

where
$M(P):=M^{P} / \sum_{Q<P} \operatorname{tr}_{Q}^{P}\left(M^{Q}\right), \quad\left(\operatorname{tr}_{Q}^{P}: M^{Q} \rightarrow M^{P}, m \mapsto \sum_{x \in P / Q} x m\right)$.

If $M=F[X]$ for a G-set X, then

$$
F\left[X^{P}\right] \hookrightarrow M^{P} \rightarrow M(P)
$$

is an isomorphism. Thus, if M is a p-permutation module then $M(P)$ is a p-permutation module.
4. Fixed points of tensor products of bisets

4. Fixed points of tensor products of bisets

Theorem (B.-Danz, 2012) Let G, H, K be finite groups, let ${ }_{G} X_{H}$ and ${ }_{H} Y_{K}$ be bifree bisets, and let $\Delta(U, \varphi, W) \leq G \times K$ be a twisted diagonal subgroup. Then the canonical map

$$
\underset{\substack{\alpha \\ U \stackrel{\alpha}{\leftarrow} V \stackrel{\beta}{\leftarrow}}}{ } X^{\Delta(U, \alpha, V)} \times C_{H}(V) Y^{\Delta(V, \beta, W)} \xrightarrow{\sim}\left(X \times_{H} Y\right)^{\Delta(U, \varphi, W)}
$$

is a $\left(C_{G}(U), C_{K}(W)\right)$-biset isomorphism. Here, $U \stackrel{\alpha}{\sim} V \stackrel{\beta}{\sim} V$ runs through all factorizations of φ through H, up to H-conjugation.

4. Fixed points of tensor products of bisets

Theorem (B.-Danz, 2012) Let G, H, K be finite groups, let ${ }_{G} X_{H}$ and ${ }_{H} Y_{K}$ be bifree bisets, and let $\Delta(U, \varphi, W) \leq G \times K$ be a twisted diagonal subgroup. Then the canonical map

$$
\underset{\substack{\alpha \\ U \stackrel{\beta}{\sim} \\ \leftarrow}}{ } X^{\Delta(U, \alpha, V)} \times C_{H}(V) Y^{\Delta(V, \beta, W)} \stackrel{\sim}{\rightarrow}\left(X \times_{H} Y\right)^{\Delta(U, \varphi, W)}
$$

is a $\left(C_{G}(U), C_{K}(W)\right.$)-biset isomorphism. Here, $U \stackrel{\alpha}{\sim} V \stackrel{\beta}{\sim} W$ runs through all factorizations of φ through H, up to H -conjugation.

Corollary Formula for $\left(M \otimes_{F H} N\right)(\Delta(P, \varphi, Q))$, for p-permutation bimodules M and N with twisted diagonal vertices.
5. Generalized tensor products of bimodules
5. Generalized tensor products of bimodules

Let $X \leq G \times H$. Then

$$
k_{1}(X) \times k_{2}(X) \leq X \leq p_{1}(X) \times p_{2}(X) \leq G \times H
$$

where

$$
k_{1}(X):=\{g \in G \mid(g, 1) \in X\} \quad \text { and } \quad k_{2}(X):=\{h \in H \mid(1, h) \in X\} .
$$

5. Generalized tensor products of bimodules

Let $X \leq G \times H$. Then

$$
k_{1}(X) \times k_{2}(X) \leq X \leq p_{1}(X) \times p_{2}(X) \leq G \times H
$$

where
$k_{1}(X):=\{g \in G \mid(g, 1) \in X\} \quad$ and $\quad k_{2}(X):=\{h \in H \mid(1, h) \in X\}$.
Additionally, let $Y \leq H \times K, M \in{ }_{F X} \bmod , N \in{ }_{F Y} \bmod$. Then

$$
M \in{ }_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(X)\right]} \quad \text { and } \quad N \in \in_{\left[k_{1}(Y)\right]} \bmod _{F\left[k_{2}(Y)\right]}
$$

via restriction.
5. Generalized tensor products of bimodules

Let $X \leq G \times H$. Then

$$
k_{1}(X) \times k_{2}(X) \leq X \leq p_{1}(X) \times p_{2}(X) \leq G \times H
$$

where
$k_{1}(X):=\{g \in G \mid(g, 1) \in X\} \quad$ and $\quad k_{2}(X):=\{h \in H \mid(1, h) \in X\}$.
Additionally, let $Y \leq H \times K, M \in{ }_{F X} \bmod , N \in{ }_{F Y} \bmod$. Then

$$
M \in{ }_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(X)\right]} \quad \text { and } \quad N \in \in_{\left[k_{1}(Y)\right]} \bmod _{F\left[k_{2}(Y)\right]}
$$

via restriction. Thus, one can form the tensor product

$$
M \otimes_{F\left[k_{2}(X) \cap k_{1}(Y)\right]} N \in \in_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(Y)\right]} .
$$

5. Generalized tensor products of bimodules

Let $X \leq G \times H$. Then

$$
k_{1}(X) \times k_{2}(X) \leq X \leq p_{1}(X) \times p_{2}(X) \leq G \times H
$$

where
$k_{1}(X):=\{g \in G \mid(g, 1) \in X\} \quad$ and $\quad k_{2}(X):=\{h \in H \mid(1, h) \in X\}$.
Additionally, let $Y \leq H \times K, M \in{ }_{F X} \bmod , N \in{ }_{F Y} \bmod$. Then

$$
M \in{ }_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(X)\right]} \quad \text { and } \quad N \in \in_{\left[k_{1}(Y)\right]} \bmod _{F\left[k_{2}(Y)\right]},
$$

via restriction. Thus, one can form the tensor product

$$
M \otimes_{F\left[k_{2}(X) \cap k_{1}(Y)\right]} N \in{ }_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(Y)\right]} .
$$

This module structure has an extension to the group
$X * Y:=\{(g, k) \in G \times K \mid \exists h \in H:(g, h) \in X,(h, k) \in Y\} \leq G \times K$.

5. Generalized tensor products of bimodules

Let $X \leq G \times H$. Then

$$
k_{1}(X) \times k_{2}(X) \leq X \leq p_{1}(X) \times p_{2}(X) \leq G \times H
$$

where
$k_{1}(X):=\{g \in G \mid(g, 1) \in X\} \quad$ and $\quad k_{2}(X):=\{h \in H \mid(1, h) \in X\}$.
Additionally, let $Y \leq H \times K, M \in{ }_{F X} \bmod , N \in{ }_{F Y} \bmod$. Then

$$
M \in{ }_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(X)\right]} \quad \text { and } \quad N \in \in_{\left[k_{1}(Y)\right]} \bmod _{F\left[k_{2}(Y)\right]},
$$

via restriction. Thus, one can form the tensor product

$$
M \otimes_{F\left[k_{2}(X) \cap k_{1}(Y)\right]} N \in{ }_{F\left[k_{1}(X)\right]} \bmod _{F\left[k_{2}(Y)\right]} .
$$

This module structure has an extension to the group
$X * Y:=\{(g, k) \in G \times K \mid \exists h \in H:(g, h) \in X,(h, k) \in Y\} \leq G \times K$.
Obtain a functor ${ }_{F X} \bmod \times{ }_{F Y} \bmod \longrightarrow F[X * Y] \bmod$.

6. Main Theorem

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in \mathrm{Bl}(F G)$, and $B \in \mathrm{Bl}(F H)$.

6. Main Theorem

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in \operatorname{Bl}(F G)$, and $B \in \operatorname{Bl}(F H)$. Suppose that $\gamma \in T^{\Delta}(A, B)$ satisfies

$$
\gamma \cdot B \gamma^{\circ}=[A] \in T^{\Delta}(A, A) \quad \text { and } \quad \gamma^{\circ} \cdot A \gamma=[B] \in T^{\Delta}(B, B),
$$

i.e., γ is a p-permutation equivalence between A and B. Then:

6. Main Theorem

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in \operatorname{Bl}(F G)$, and $B \in \operatorname{Bl}(F H)$. Suppose that $\gamma \in T^{\Delta}(A, B)$ satisfies

$$
\gamma \cdot B \gamma^{\circ}=[A] \in T^{\Delta}(A, A) \quad \text { and } \quad \gamma^{\circ} \cdot A \gamma=[B] \in T^{\Delta}(B, B),
$$

i.e., γ is a p-permutation equivalence between A and B. Then:
(a) There exists a unique constituent [M] of γ with vertex of the form $\Delta(D, \varphi, E)$, where D and E are defect groups of A and B. Moreover, M has multiplicity ± 1. We call M the maximal module of γ.

6. Main Theorem

Theorem (B.-Perepelitsky 2013) Let G and H be finite groups, $A \in \operatorname{Bl}(F G)$, and $B \in \operatorname{Bl}(F H)$. Suppose that $\gamma \in T^{\Delta}(A, B)$ satisfies

$$
\gamma \cdot B \gamma^{\circ}=[A] \in T^{\Delta}(A, A) \quad \text { and } \quad \gamma^{\circ} \cdot A \gamma=[B] \in T^{\Delta}(B, B),
$$

i.e., γ is a p-permutation equivalence between A and B. Then:
(a) There exists a unique constituent $[M]$ of γ with vertex of the form $\Delta(D, \varphi, E)$, where D and E are defect groups of A and B. Moreover, M has multiplicity ± 1. We call M the maximal module of γ.
(b) Every constituent of γ has a vertex contained in $\Delta(D, \varphi, E)$. (Uniformity)
(c) Let (D, e) and (E, f) be maximal Brauer pairs of A and B, respectively, such that

$$
e \cdot \gamma(\Delta(D, \varphi, E)) \cdot f \neq 0
$$

Then, $\varphi: E \xrightarrow{\sim} D$ is an isomorphism between the associated fusion systems.
(c) Let (D, e) and (E, f) be maximal Brauer pairs of A and B, respectively, such that

$$
e \cdot \gamma(\Delta(D, \varphi, E)) \cdot f \neq 0
$$

Then, $\varphi: E \xrightarrow{\sim} D$ is an isomorphism between the associated fusion systems.
(d) The Brauer correspondents $a \in \operatorname{Bl}\left(F\left[N_{G}(D)\right]\right)$ of A and $b \in \operatorname{Bl}\left(F\left[N_{H}(E)\right]\right)$ of B are Morita equivalent via the p-permutation bimodule

$$
\operatorname{Ind}_{\ldots}^{N_{G}(D) \times N_{H}(E)}(e \cdot M(\Delta(D, \varphi, E)) \cdot f)
$$

(e) If $\left(P, e_{P}\right) \leftrightarrow\left(Q, f_{Q}\right)$ are corresponding Brauer pairs of A and B, then

$$
e_{P} \cdot \gamma(\Delta(P, \varphi, Q)) \cdot f_{Q} \in T^{\Delta}\left(F C_{G}(P) e_{P}, F C_{H}(Q) f_{Q}\right)
$$

is again a p-permutation equivalence. (Isotopy)
(e) If $\left(P, e_{P}\right) \leftrightarrow\left(Q, f_{Q}\right)$ are corresponding Brauer pairs of A and B, then

$$
e_{P} \cdot \gamma(\Delta(P, \varphi, Q)) \cdot f_{Q} \in T^{\Delta}\left(F C_{G}(P) e_{P}, F C_{H}(Q) f_{Q}\right)
$$

is again a p-permutation equivalence. (Isotopy)
(f) If $\left(P, e_{P}\right) \leftrightarrow\left(Q, f_{Q}\right)$ are corresponding self-centralizing Brauer pairs of A and B, then the associated Külshammer-Puig 2-cocycles on $N_{G}\left(P, e_{P}\right) / P C_{G}(P)$ and $N_{H}\left(Q, f_{Q}\right) / Q C_{H}(Q)$ "coincide via φ ".
(e) If $\left(P, e_{P}\right) \leftrightarrow\left(Q, f_{Q}\right)$ are corresponding Brauer pairs of A and B, then

$$
e_{P} \cdot \gamma(\Delta(P, \varphi, Q)) \cdot f_{Q} \in T^{\Delta}\left(F C_{G}(P) e_{P}, F C_{H}(Q) f_{Q}\right)
$$

is again a p-permutation equivalence. (Isotopy)
(f) If $\left(P, e_{P}\right) \leftrightarrow\left(Q, f_{Q}\right)$ are corresponding self-centralizing Brauer pairs of A and B, then the associated Külshammer-Puig 2-cocycles on $N_{G}\left(P, e_{P}\right) / P C_{G}(P)$ and $N_{H}\left(Q, f_{Q}\right) / Q C_{H}(Q)$ "coincide via φ^{\prime}.
(g) The group of p-permutation auto-equivalences of A is finite.

Thank you!

