The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

University of Southern California

AMS Fall Western Sectional Meeting October 26th, 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Some research into the value of pictures

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

1 picture = 1,000 words¹

Average speaking rate = 150 words per minute²

1 talk = 20 minutes³

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹Source: on good authority ²Source: the internet ³Source: the organizers

Some research into the value of pictures

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

1 picture = 1,000 words¹

Average speaking rate = 150 words per minute²

 $1 \text{ talk} = 20 \text{ minutes}^3$

Theorem (W, last week)

1 picture
$$=\frac{1}{3}$$
 talk

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹Source: on good authority ²Source: the internet ³Source: the organizers

Some research into the value of pictures

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

1 picture = 1,000 words¹

Average speaking rate = $150 \text{ words per minute}^2$

 $1 \text{ talk} = 20 \text{ minutes}^3$

Theorem (W, last week)				
$1 \ picture = \frac{1}{3} \ talk$				
Proof:				
$1 \text{ picture} = 1 \text{ picture} \cdot \frac{1000 \text{ wds}}{1 \text{ picture}} \cdot \frac{1 \text{ min}}{150 \text{ wds}} \cdot \frac{1 \text{ talk}}{20 \text{ min}} = \frac{1}{3} \text{ talk}$				
¹ Source: on good authority ² Source: the internet				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

³Source: the organizers

he category f elementary balgebras of a restricted Lie algebra	
	Finite Groups
	(Quinen's locus)

s

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ æ

The category of elementary subalgebras of a restricted Lie algebra			
	Finite Groups	(Restricted
	(Quillen's focus)		Lie algebras

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quillen's category of elementary subgroups

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

Let Γ be a finite group, and let p be a prime number.

The category of elementary abelian *p*-subgroups (Quillen, 1971)

Let $\mathcal{E}(\Gamma)$ denote the category whose objects are the elementary abelian *p*-subgroups of Γ and in which a morphism from *E* to *E'* is defined to be a composition of group homomorphisms of the following form:

Inclusions: $E \hookrightarrow E'$ Conjugations: $E \xrightarrow{\sim} g^{-1}Eg$

Quillen's category of elementary subgroups

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

Let Γ be a finite group, and let p be a prime number.

The category of elementary abelian *p*-subgroups (Quillen, 1971)

Let $\mathcal{E}(\Gamma)$ denote the category whose objects are the elementary abelian *p*-subgroups of Γ and in which a morphism from *E* to *E'* is defined to be a composition of group homomorphisms of the following form:

Inclusions: $E \hookrightarrow E'$ Conjugations: $E \xrightarrow{\sim} g^{-1}Eg$

Note 1: Hom_{$\mathcal{E}(\Gamma)$}(E, E') $\neq \emptyset$ if and only if E is conjugate to a subgroup of E'.

Note 2: $\operatorname{Hom}_{\mathcal{E}(\Gamma)}(E, E) \cong N_G(E)/C_G(E)$.

$\mathcal{E}(\Gamma)$ in cohomology

The category of elementary subalgebras of a restricted Lie algebra

Jared Warne

Finite groups

Restricted Lie algebras

Springer isomorphism:

An application

For k an algebraically closed field of characteristic p, let

$$\mathcal{H}(\Gamma) := egin{cases} H^{ev}(\Gamma,k) & p
eq 2 \ H^*(\Gamma,k) & p=2 \end{cases} ext{ and } \mathcal{X}_{\Gamma} := \operatorname{Spec} \mathcal{H}(\Gamma)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\mathcal{E}(\Gamma)$ in cohomology

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

I

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

For k an algebraically closed field of characteristic p, let

$$\mathcal{H}(\Gamma) := egin{cases} H^{ev}(\Gamma,k) & p
eq 2 \ H^*(\Gamma,k) & p = 2 \end{cases} \quad ext{ and } \quad X_{\Gamma} := \operatorname{Spec} \mathcal{H}(\Gamma)$$

Inclusions $\iota : E \hookrightarrow \Gamma$ induce continuous maps $\iota_E : X_E \to X_{\Gamma}$ with the following properties:

- $\iota_E(X_E) \subset \iota_{E'}(X_{E'})$ if and only if $\operatorname{Hom}_{\mathcal{E}(\Gamma)}(E, E') \neq \emptyset$.
- The group Hom_{ε(Γ)}(E, E) determines precisely when two points p, q ∈ X_E satisfy ι_E(p) = ι_E(q).

$\mathcal{E}(\Gamma)$ in cohomology

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

I

Finite groups

Restricted Lie algebras

Springer isomorphism:

An application

For k an algebraically closed field of characteristic p, let

$$\mathcal{H}(\Gamma) := egin{cases} H^{ev}(\Gamma,k) & p
eq 2 \ H^*(\Gamma,k) & p = 2 \end{cases} \quad ext{ and } \quad X_{\Gamma} := \operatorname{Spec} \mathcal{H}(\Gamma)$$

Inclusions $\iota : E \hookrightarrow \Gamma$ induce continuous maps $\iota_E : X_E \to X_{\Gamma}$ with the following properties:

- $\iota_E(X_E) \subset \iota_{E'}(X_{E'})$ if and only if $\operatorname{Hom}_{\mathcal{E}(\Gamma)}(E, E') \neq \emptyset$.
- The group Hom_{ε(Γ)}(E, E) determines precisely when two points p, q ∈ X_E satisfy ι_E(p) = ι_E(q).

Theorem (Quillen,1971)

$$X_{\Gamma} \cong \varinjlim_{E \in \mathcal{E}(\Gamma)} X_E$$

Restricted Lie algebras

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

Let $(\mathfrak{g}, [-, -], (-)^{[p]})$ be a restricted Lie algebra over k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition - elementary subalgebra

A subalgebra $\epsilon \subset \mathfrak{g}$ is called <u>elementary</u> if

•
$$[\epsilon, \epsilon] = 0$$
 and

•
$$\epsilon^{[p]} = 0.$$

Restricted Lie algebras

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

Let $(\mathfrak{g}, [-, -], (-)^{[p]})$ be a restricted Lie algebra over k.

Definition - elementary subalgebra

A subalgebra $\epsilon \subset \mathfrak{g}$ is called elementary if

•
$$[\epsilon, \epsilon] = 0$$
 and
• $\epsilon^{[p]} = 0.$

Suppose further that \mathfrak{g} is the Lie algebra of an algebraic group G over k. For any $g \in G$, the derivative of the map

$$\operatorname{nt}_g: G \longrightarrow G$$

 $a \longmapsto g^{-1}ag$

gives the adjoint action of G on \mathfrak{g} : $\operatorname{Ad}_g := d(\operatorname{Int}_g) : \mathfrak{g} \to \mathfrak{g}$.

Category of elementary subalgebras

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

The category of elementary subalgebras

Let $\mathcal{E}(\mathfrak{g})$ denote the category whose objects are the elementary subalgebras of \mathfrak{g} and in which a morphism from ϵ to ϵ' is defined to be a composition of Lie algebra homomorphisms of the following form:

Inclusions: $\epsilon \hookrightarrow \epsilon'$ Conjugations: $\epsilon \xrightarrow{\sim} \operatorname{Ad}_g(\epsilon)$

Category of elementary subalgebras

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

The category of elementary subalgebras

Let $\mathcal{E}(\mathfrak{g})$ denote the category whose objects are the elementary subalgebras of \mathfrak{g} and in which a morphism from ϵ to ϵ' is defined to be a composition of Lie algebra homomorphisms of the following form:

Inclusions:
$$\epsilon \hookrightarrow \epsilon'$$
 Conjugations: $\epsilon \xrightarrow{\sim} \operatorname{Ad}_{g}(\epsilon)$

Note 1: Hom_{$\mathcal{E}(\mathfrak{g})$}(ϵ, ϵ') $\neq \emptyset$ if and only if Ad_g(ϵ) $\subset \epsilon'$ for some $g \in G$.

Note 2: $\operatorname{Hom}_{\mathcal{E}(\mathfrak{g})}(\epsilon, \epsilon) \cong N_G(\epsilon)/C_G(\epsilon).$

Category of \mathbb{F}_q -expressible subalgebras

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

Let $q = p^d$ and suppose that G is defined over \mathbb{F}_q , so that $G = G_0 \times_{\mathbb{F}_q} k$ for some algebraic group G_0 over \mathbb{F}_q and $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{F}_q} k$ for $\mathfrak{g}_0 := \text{Lie}(G_0)$.

The category of \mathbb{F}_q -expressible subalgebras

Let $\mathcal{E}_q(\mathfrak{g})$ be the subcategory of $\mathcal{E}(\mathfrak{g})$ whose objects are subalgebras of the form $\epsilon = \epsilon_0 \otimes_{\mathbb{F}_q} k$ for elementary $\epsilon_0 \subset \mathfrak{g}_0$. The morphisms in $\mathcal{E}_q(\mathfrak{g})$ are inclusion composed with Ad_g for some $g \in G_0(\mathbb{F}_q)$.

Category of \mathbb{F}_q -expressible subalgebras

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphism

An application

Let $q = p^d$ and suppose that G is defined over \mathbb{F}_q , so that $G = G_0 \times_{\mathbb{F}_q} k$ for some algebraic group G_0 over \mathbb{F}_q and $\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{F}_q} k$ for $\mathfrak{g}_0 := \text{Lie}(G_0)$.

The category of \mathbb{F}_q -expressible subalgebras

Let $\mathcal{E}_q(\mathfrak{g})$ be the subcategory of $\mathcal{E}(\mathfrak{g})$ whose objects are subalgebras of the form $\epsilon = \epsilon_0 \otimes_{\mathbb{F}_q} k$ for elementary $\epsilon_0 \subset \mathfrak{g}_0$. The morphisms in $\mathcal{E}_q(\mathfrak{g})$ are inclusion composed with Ad_g for some $g \in G_0(\mathbb{F}_q)$.

Theorem (W,2014)

Let G be a reductive, connected group defined over \mathbb{F}_q . If p > h(G), then the category $\mathcal{E}_q(\mathfrak{g})$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If p = q, then $\mathcal{E}_p(\mathfrak{g}) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.

Springer isomorphisms

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie

Springer isomorphisms

An application

Define

$$\mathcal{N}(\mathfrak{g}) := \{ x \in \mathfrak{g} \mid x^{[p]^t} = 0 \text{ for some } t \in \mathbb{Z}^{\geq 0} \}$$

 $\mathcal{U}(G) := \{ g \in G \mid g^{p^t} = 1 \text{ for some } t \in \mathbb{Z}^{\geq 0} \}$

to be the <u>nullcone of \mathfrak{g} and the <u>unipotent variety of G</u>, respectively. Notice that both varieties are equipped with natural *G*-actions.</u>

Definition - Springer isomorphism

A Springer isomorphism is a *G*-equivariant isomorphism of varieties $\sigma : \mathcal{N}(\mathfrak{g}) \to \mathcal{U}(G)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Springer isomorphisms

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie

Springer isomorphisms

An application

Define

$$\mathcal{N}(\mathfrak{g}) := \{ x \in \mathfrak{g} \mid x^{[p]^t} = 0 \text{ for some } t \in \mathbb{Z}^{\geq 0} \}$$

 $\mathcal{U}(G) := \{ g \in G \mid g^{p^t} = 1 \text{ for some } t \in \mathbb{Z}^{\geq 0} \}$

to be the nullcone of \mathfrak{g} and the unipotent variety of G, respectively. Notice that both varieties are equipped with natural G-actions.

Definition - Springer isomorphism

A Springer isomorphism is a *G*-equivariant isomorphism of varieties $\sigma : \mathcal{N}(\mathfrak{g}) \to \mathcal{U}(G)$.

Theorem (Springer, 1969)

If p is very good for G, then Springer isomorphisms exist.

A canonical Springer isomorphism

The category of elementary subalgebras of a restricted Lie algebra

Jared Warne

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

Example (Springer isomorphisms are not unique)

Let $G := SL_n$. Then for any $(a_1, \ldots, a_{n-1}) \in k^{n-1}$ with $a_1 \neq 0$ the map

$$\sigma(x) := 1 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

is a Springer isomorphism.

A canonical Springer isomorphism

The category of elementary subalgebras of a restricted Lie algebra

Jared Warne

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

Example (Springer isomorphisms are not unique)

Let $G := SL_n$. Then for any $(a_1, \ldots, a_{n-1}) \in k^{n-1}$ with $a_1 \neq 0$ the map

$$\sigma(x) := 1 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-2}$$

is a Springer isomorphism.

(McNinch, 2005), (Carlson-Lin-Nakano, 2008), (Sobaje, 2014)

If p > h(G), there is a canonical Springer isomorphism σ , defined over \mathbb{F}_q , which satisfies the following properties (among others):

•
$$[x, y] = 0$$
 if and only if $(\sigma(x), \sigma(y)) = 1$

• If
$$[x, y] = 0$$
, then $\sigma(x + y) = \sigma(x)\sigma(y)$

Proof of theorem

Theorem (W,2014)

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

Let G be a reductive, connected group defined over \mathbb{F}_p . If p > h(G), then the category $\mathcal{E}_q(\mathfrak{g})$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If p = q, then $\mathcal{E}_p(\mathfrak{g}) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof of theorem

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

Theorem (W,2014)

Let G be a reductive, connected group defined over \mathbb{F}_p . If p > h(G), then the category $\mathcal{E}_q(\mathfrak{g})$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If p = q, then $\mathcal{E}_p(\mathfrak{g}) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.

Proof:Define $\mathcal{F}: \mathcal{E}_q(\mathfrak{g}) \to \mathcal{E}(\mathcal{G}_0(\mathbb{F}_q))$ by

 $\mathcal{F}(\epsilon) := \sigma(\epsilon_0)$

 $\mathcal{F}(\mathsf{Ad}_g) := \mathsf{Int}_g$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof of theorem

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

Theorem (W,2014)

Let G be a reductive, connected group defined over \mathbb{F}_p . If p > h(G), then the category $\mathcal{E}_q(\mathfrak{g})$ is isomorphic to a full subcategory of $\mathcal{E}(G_0(\mathbb{F}_q))$. If p = q, then $\mathcal{E}_p(\mathfrak{g}) \cong \mathcal{E}(G_0(\mathbb{F}_p))$.

Proof:Define $\mathcal{F} : \mathcal{E}_q(\mathfrak{g}) \to \mathcal{E}(G_0(\mathbb{F}_q))$ by

 $\mathcal{F}(\epsilon) := \sigma(\epsilon_0)$

 $\mathcal{F}(\mathsf{Ad}_g) := \mathsf{Int}_g$

Question: Which $E \in G_0(\mathbb{F}_q)$ lie in the image of \mathcal{F} ?

\mathbb{F}_q -linear subgroups

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

For any
$$\lambda \in k$$
, $g \in \mathcal{U}(G)$, define $g^{\lambda} := \sigma(\lambda \sigma^{-1}(g))$.

Definition - \mathbb{F}_q -linear subgroup

An elementary abelian subgroup $E \subset G$ is $\underline{\mathbb{F}_{q}}$ -linear if $g^{\lambda} \in E$ for all $g \in E$, $\lambda \in \mathbb{F}_{q}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

\mathbb{F}_q -linear subgroups

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

For any $\lambda \in k$, $g \in \mathcal{U}(G)$, define $g^{\lambda} := \sigma(\lambda \sigma^{-1}(g))$.

Definition - \mathbb{F}_q -linear subgroup

An elementary abelian subgroup $E \subset G$ is $\underline{\mathbb{F}_{q}}$ -linear if $g^{\lambda} \in E$ for all $g \in E$, $\lambda \in \mathbb{F}_{q}$.

Proposition (W,2014)

- All $E \subset G$ are \mathbb{F}_p -linear.
- Any $E \subset G$ is contained in a canonical \mathbb{F}_q -linear subgroup
- The rank of all finite \mathbb{F}_q -linear subgroups is divisible by d.
- The image of *F* is exactly the set of 𝔽_q-linear elementary abelian subgroups of G₀(𝔽_q).

A non-example

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

Example of a subgroup that is not \mathbb{F}_q -linear

Let $G = SL_3$, let d = 2, and let $\lambda \in \mathbb{F}_q \setminus \mathbb{F}_p$. In this case, we have $\sigma(X) = I + X + \frac{1}{2}X^2$. The elementary abelian subgroup of rank 2 defined as follows:

$$E = \left\langle g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle$$

is not \mathbb{F}_q -linear.

Application

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

Let $\mathbb{E}(r, \mathfrak{g})$ denote the set of all *r*-dimensional elementary subalgebras of \mathfrak{g} .

Theorem (Carlson-Friedlander-Pevtsova, 2012)

The natural embedding $\mathbb{E}(r, \mathfrak{g}) \hookrightarrow \operatorname{Grass}(r, \mathfrak{g})$ is a closed embedding. If $\mathfrak{g} = \operatorname{Lie}(G)$, then $\mathbb{E}(r, \mathfrak{g})$ is a G-variety under Ad.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups Restricted Lie algebras

Springer isomorphisms

An application

Let $\mathbb{E}(r, \mathfrak{g})$ denote the set of all *r*-dimensional elementary subalgebras of \mathfrak{g} .

Theorem (Carlson-Friedlander-Pevtsova, 2012)

The natural embedding $\mathbb{E}(r, \mathfrak{g}) \hookrightarrow \operatorname{Grass}(r, \mathfrak{g})$ is a closed embedding. If $\mathfrak{g} = \operatorname{Lie}(G)$, then $\mathbb{E}(r, \mathfrak{g})$ is a G-variety under Ad.

Theorem (W,2014)

Let $\mathfrak{g} = \text{Lie}(G)$ for G connected and reductive, let p > h(G), and let $R = R(\mathfrak{g})$ be the largest integer such that $\mathbb{E}(R,\mathfrak{g}) \neq \emptyset$. If the simple factors of (G,G) are of classical type, then $\mathbb{E}(R,\text{Lie}(G))$ is a union of finitely many G-orbits.

Remark: Verifying the theorem for all G would require knowledge of elementary abelian subgroups of the \mathbb{F}_q -rational points of the exceptional groups.

Questions

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite groups

Restricted Lie algebras

Springer isomorphisms

An application

- What role does the category $\mathcal{E}(\mathfrak{g})$ play in restricted Lie algebra cohomology à la Quillen?
- What is the cohomological significance of R = R(g)?
- What are the closed subsets of $\mathbb{E}(r, \mathfrak{g})$? When is $\mathbb{E}(r, \mathfrak{g})$ irreducible?

Thank you for listening!

The category of elementary subalgebras of a restricted Lie algebra

Jared Warner

Finite group

Restricted Lie algebras

Springer isomorphism:

An application

CWarner Bros. Entertainment Inc.