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Some research into the value of pictures

1 picture = 1,000 words1

Average speaking rate = 150 words per minute2

1 talk = 20 minutes3

Theorem (W, last week)

1 picture =
1

3
talk

Proof:

1 picture = 1 picture · 1000 wds

1 picture
· 1 min

150 wds
· 1 talk

20 min
=

1

3
talk

1Source: on good authority
2Source: the internet
3Source: the organizers
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Quillen’s category of elementary subgroups

Let Γ be a finite group, and let p be a prime number.

The category of elementary abelian p-subgroups (Quillen, 1971)

Let E(Γ) denote the category whose objects are the elementary
abelian p-subgroups of Γ and in which a morphism from E to
E ′ is defined to be a composition of group homomorphisms of
the following form:

Inclusions: E ↪→ E ′ Conjugations: E
∼−→ g−1Eg

Note 1: HomE(Γ)(E ,E ′) 6= ∅ if and only if E is conjugate to a
subgroup of E ′.

Note 2: HomE(Γ)(E ,E ) ∼= NG (E )/CG (E ).
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E(Γ) in cohomology

For k an algebraically closed field of characteristic p, let

H(Γ) :=

{
Hev (Γ, k) p 6= 2

H∗(Γ, k) p = 2
and XΓ := SpecH(Γ)

Inclusions ι : E ↪→ Γ induce continuous maps ιE : XE → XΓ

with the following properties:

ιE (XE ) ⊂ ιE ′(XE ′) if and only if HomE(Γ)(E ,E ′) 6= ∅.

The group HomE(Γ)(E ,E ) determines precisely when two
points p, q ∈ XE satisfy ιE (p) = ιE (q).

Theorem (Quillen,1971)

XΓ
∼= lim−→

E∈E(Γ)

XE
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Restricted Lie algebras

Let (g, [−,−], (−)[p]) be a restricted Lie algebra over k .

Definition - elementary subalgebra

A subalgebra ε ⊂ g is called elementary if

[ε, ε] = 0 and

ε[p] = 0.

Suppose further that g is the Lie algebra of an algebraic group
G over k . For any g ∈ G , the derivative of the map

Intg : G −→ G
a 7−→ g−1ag

gives the adjoint action of G on g: Adg := d(Intg ) : g→ g.
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Category of elementary subalgebras

The category of elementary subalgebras

Let E(g) denote the category whose objects are the elementary
subalgebras of g and in which a morphism from ε to ε′ is
defined to be a composition of Lie algebra homomorphisms of
the following form:

Inclusions: ε ↪→ ε′ Conjugations: ε
∼−→ Adg (ε)

Note 1: HomE(g)(ε, ε′) 6= ∅ if and only if Adg (ε) ⊂ ε′ for some
g ∈ G .

Note 2: HomE(g)(ε, ε) ∼= NG (ε)/CG (ε).
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Category of Fq-expressible subalgebras

Let q = pd and suppose that G is defined over Fq, so that
G = G0 ×Fq k for some algebraic group G0 over Fq and
g = g0 ⊗Fq k for g0 := Lie(G0).

The category of Fq-expressible subalgebras

Let Eq(g) be the subcategory of E(g) whose objects are
subalgebras of the form ε = ε0 ⊗Fq k for elementary ε0 ⊂ g0.
The morphisms in Eq(g) are inclusion composed with Adg for
some g ∈ G0(Fq).

Theorem (W,2014)

Let G be a reductive, connected group defined over Fq. If
p > h(G ), then the category Eq(g) is isomorphic to a full
subcategory of E(G0(Fq)). If p = q, then Ep(g) ∼= E(G0(Fp)).
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Springer isomorphisms

Define

N (g) := {x ∈ g | x [p]t = 0 for some t ∈ Z≥0}

U(G ) := {g ∈ G | gpt = 1 for some t ∈ Z≥0}

to be the nullcone of g and the unipotent variety of G ,
respectively. Notice that both varieties are equipped with
natural G -actions.

Definition - Springer isomorphism

A Springer isomorphism is a G -equivariant isomorphism of
varieties σ : N (g)→ U(G ).

Theorem (Springer, 1969)

If p is very good for G , then Springer isomorphisms exist.



The category
of elementary
subalgebras of

a restricted
Lie algebra

Jared Warner

Finite groups

Restricted Lie
algebras

Springer
isomorphisms

An application

Springer isomorphisms

Define

N (g) := {x ∈ g | x [p]t = 0 for some t ∈ Z≥0}

U(G ) := {g ∈ G | gpt = 1 for some t ∈ Z≥0}

to be the nullcone of g and the unipotent variety of G ,
respectively. Notice that both varieties are equipped with
natural G -actions.

Definition - Springer isomorphism

A Springer isomorphism is a G -equivariant isomorphism of
varieties σ : N (g)→ U(G ).

Theorem (Springer, 1969)

If p is very good for G , then Springer isomorphisms exist.



The category
of elementary
subalgebras of

a restricted
Lie algebra

Jared Warner

Finite groups

Restricted Lie
algebras

Springer
isomorphisms

An application

A canonical Springer isomorphism

Example (Springer isomorphisms are not unique)

Let G := SLn. Then for any (a1, . . . , an−1) ∈ kn−1 with a1 6= 0
the map

σ(x) := 1 + a1x + a2x
2 + . . .+ an−1x

n−1

is a Springer isomorphism.

(McNinch, 2005), (Carlson-Lin-Nakano, 2008), (Sobaje, 2014)

If p > h(G ), there is a canonical Springer isomorphism σ,
defined over Fq, which satisfies the following properties (among
others):

[x , y ] = 0 if and only if (σ(x), σ(y)) = 1

If [x , y ] = 0, then σ(x + y) = σ(x)σ(y)
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Proof of theorem

Theorem (W,2014)

Let G be a reductive, connected group defined over Fp. If
p > h(G ), then the category Eq(g) is isomorphic to a full
subcategory of E(G0(Fq)). If p = q, then Ep(g) ∼= E(G0(Fp)).

Proof:Define F : Eq(g)→ E(G0(Fq)) by

F(ε) := σ(ε0)

F(Adg ) := Intg

Question: Which E ∈ G0(Fq) lie in the image of F?
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Fq-linear subgroups

For any λ ∈ k, g ∈ U(G ), define gλ := σ(λσ−1(g)).

Definition - Fq-linear subgroup

An elementary abelian subgroup E ⊂ G is Fq-linear if gλ ∈ E
for all g ∈ E , λ ∈ Fq.

Proposition (W,2014)

All E ⊂ G are Fp-linear.

Any E ⊂ G is contained in a canonical Fq-linear subgroup

The rank of all finite Fq-linear subgroups is divisible by d .

The image of F is exactly the set of Fq-linear elementary
abelian subgroups of G0(Fq).
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A non-example

Example of a subgroup that is not Fq-linear

Let G = SL3, let d = 2, and let λ ∈ Fq \ Fp. In this case, we
have σ(X ) = I + X + 1

2X
2. The elementary abelian subgroup

of rank 2 defined as follows:

E =

〈
g =

1 1 0
0 1 0
0 0 1

 , h =

1 0 1
0 1 0
0 0 1

〉

is not Fq-linear.
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Application

Let E(r , g) denote the set of all r -dimensional elementary
subalgebras of g.

Theorem (Carlson-Friedlander-Pevtsova, 2012)

The natural embedding E(r , g) ↪→ Grass(r , g) is a closed
embedding. If g = Lie(G ), then E(r , g) is a G -variety under Ad.

Theorem (W,2014)

Let g = Lie(G ) for G connected and reductive, let p > h(G ),
and let R = R(g) be the largest integer such that E(R, g) 6= ∅.
If the simple factors of (G ,G ) are of classical type, then
E(R, Lie(G )) is a union of finitely many G -orbits.

Remark: Verifying the theorem for all G would require
knowledge of elementary abelian subgroups of the Fq-rational
points of the exceptional groups.
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Questions

What role does the category E(g) play in restricted Lie
algebra cohomology à la Quillen?

What is the cohomological significance of R = R(g)?

What are the closed subsets of E(r , g)? When is E(r , g)
irreducible?
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Thank you for listening!
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