Odd structures arising from categorified quantum groups

Aaron Lauda (Joint with Alexander P. Ellis, Mikhail Khovanov, and Heather Russell)

University of Southern California

October 25th, 2014

Aaron Lauua (030)	Aaron I	Lauda ((USC)
-------------------	---------	---------	-------

Odd structures

ヘロト 不良 トイヨト イヨト

Motivation from Knot theory

The discovery of Khovanov homology motivated the study of categorified quantum \mathfrak{sl}_2 .

A D N A B N A B N A B N

Motivation from Knot theory

The discovery of Khovanov homology motivated the study of categorified quantum \mathfrak{sl}_2 .

This categorification is closely connected to

- The geometry of flag varieties and Grassmannians
- The combinatorics of symmetric functions
- Hecke algebras in type A

EN 4 EN

Khovanov's categorification of the Jones polynomial is not unique.

Aaron Lauda (USC)

Odd structures

October 25th, 2014 3 / 22

(4) (3) (4) (4) (4)

Khovanov's categorification of the Jones polynomial is not unique.

Both theories categorify the Jones polynomial

(4) (5) (4) (5)

Khovanov's categorification of the Jones polynomial is not unique.

- Both theories categorify the Jones polynomial
- Both theories agree when coefficients are reduced modulo two

Khovanov's categorification of the Jones polynomial is not unique.

- Both theories categorify the Jones polynomial
- Both theories agree when coefficients are reduced modulo two
- Shumakovitch showed that both theories are distinct

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Idea: Utilize these discoveries in knot theory to discover new structures in geometric representation theory via the connection to quantum groups

Aaron Lauda (USC)

Odd structures

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

• These theories should be distinct from classical theories.

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced mod 2.

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced mod 2.
- Odd theories should have many of the same combinatorial features as their classical counterparts.

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced mod 2.
- Odd theories should have many of the same combinatorial features as their classical counterparts.
- Noncommutativity will be an inherent feature of such oddifications.

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced mod 2.
- Odd theories should have many of the same combinatorial features as their classical counterparts.
- Noncommutativity will be an inherent feature of such oddifications.

In this story the nilHecke algebra is the star of the show.

Generators for the NilHecke algebra

$$| \dots | \dots | := \mathbf{1} \in \mathcal{NH}_n$$
$$| \dots | := \mathbf{x}_r \qquad | \dots \mid \mathbf{X} | \dots | := \partial_r$$

Relations

Aaron Lauda (USC)

Odd structures

Isotopy relations

Algebraic Isotopy Relations

$$\begin{aligned} \mathbf{x}_i \mathbf{x}_j &= \mathbf{x}_j \mathbf{x}_i \quad (i \neq j), \\ \partial_i \partial_j &= \partial_j \partial_i \quad (|i - j| > 1), \\ \mathbf{x}_i \partial_j &= \partial_j \mathbf{x}_i \quad (i \neq j, j + 1). \end{aligned}$$

Aaron Lauda (USC)

æ

イロト イヨト イヨト イヨト

Polynomial representation

The algebra \mathcal{NH}_n acts on the polynomial ring $\operatorname{Pol}_n := \mathbb{Z}[x_1, x_2, \dots, x_n]$ with x_i acting by multiplication and ∂_i acting by divided difference operators

$$\partial_i(f) = rac{f - \mathbf{s}_i(f)}{\mathbf{x}_i - \mathbf{x}_{i+1}} \qquad f \in \operatorname{Pol}_n,$$

 $s_i(f)$ is the action of the symmetric group S_n by permuting variables.

Polynomial representation

The algebra \mathcal{NH}_n acts on the polynomial ring $\operatorname{Pol}_n := \mathbb{Z}[x_1, x_2, \dots, x_n]$ with x_i acting by multiplication and ∂_i acting by divided difference operators

$$\partial_i(f) = rac{f - s_i(f)}{x_i - x_{i+1}} \qquad f \in \operatorname{Pol}_n,$$

 $s_i(f)$ is the action of the symmetric group S_n by permuting variables.

Alternatively, we can define ∂_i by

$$\partial_i(1) = 0, \qquad \partial_i(\mathbf{x}_j) = \begin{cases} 1 & \text{if } j = i, \\ -1 & \text{if } j = i+1, \\ 0 & \text{otherwise,} \end{cases}$$

(.

and the "Leibniz rule"

 $\partial_i(fg) = \partial_i(f)g + s_i(f)\partial_i(g)$ for all $f, g \in \mathbb{Z}[x_1, \dots, x_n]$.

Symmetric functions

The ring of symmetric functions has many descriptions

$$\Lambda_n = \mathbb{Z}[x_1, x_2, \dots, x_n]^{S_n} = \bigcap_{i=1}^{n-1} \ker(\partial_i) = \bigcap_{i=1}^{n-1} \operatorname{im} (\partial_i).$$

This ring can also be described as $\Lambda_n \cong \mathbb{Z}[\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n]$, where ε_k is the usual elementary symmetric polynomial

$$\varepsilon_k(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \mathbf{x}_{i_1} \cdots \mathbf{x}_{i_n}$$

of degree 2k (since deg $(x_i) = 2$).

Example (n = 3)

$$\begin{aligned} \varepsilon_1(x_1, x_2, x_3) &= x_1 + x_2 + x_3 \\ \varepsilon_2(x_1, x_2, x_3) &= x_1 x_2 + x_2 x_3 + x_1 x_3 \\ \varepsilon_1(x_1, x_2, x_3) &= x_1 x_2 x_3 \end{aligned}$$

Aaron Lauda (USC)

There are other nice bases for Λ_n such as

complete symmetric functions

$$h_k(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} \mathbf{x}_{i_1} \cdots \mathbf{x}_{i_n}$$

satisfying

$$\sum_{a+b=n} (-1)^b \varepsilon_a h_b = \delta_{n,0}.$$

Aaron Lauda (USC)

Odd structures

October 25th, 2014 10 / 22

16 N A 16

Image: A matrix

There are other nice bases for Λ_n such as

complete symmetric functions

$$h_k(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} \mathbf{x}_{i_1} \cdots \mathbf{x}_{i_n}$$

satisfying

$$\sum_{a+b=n} (-1)^b \varepsilon_a h_b = \delta_{n,0}.$$

Schur functions

$$\mathbf{s}_{\lambda} = \partial_{w_0}(\mathbf{x}_1^{n-1+\lambda_1}\mathbf{x}_2^{n-2+\lambda_2}\dots\mathbf{x}_n^{\lambda_n})$$

where w_0 is the longest element of the symmetric group.

Aaron Lauua (030)	Aaron I	Lauda (USC)
-------------------	---------	---------	------

The ring of polynomials Pol_n is a free Λ_n -module of rank n!. Two natural basis for Pol_n as a free Λ_n module are

• The set $\left\{x_1^{\ell_1}x_2^{\ell_2}\dots x_n^{\ell_n}\right\}$ where $0 \leq \ell_i \leq n-i$.

The basis of Schubert polynomials

$$\mathfrak{S}_w := \partial_{w_0 w^{-1}} (x_1^{n-1} x_2^{n-2} \dots x_n^0)$$

for $w \in S_n$.

A B F A B F

The ring of polynomials Pol_n is a free Λ_n -module of rank n!. Two natural basis for Pol_n as a free Λ_n module are

• The set $\left\{x_1^{\ell_1}x_2^{\ell_2}\dots x_n^{\ell_n}\right\}$ where $0 \leq \ell_i \leq n-i$.

• The basis of Schubert polynomials

$$\mathfrak{S}_w := \partial_{w_0 w^{-1}} (x_1^{n-1} x_2^{n-2} \dots x_n^0)$$

for $w \in S_n$.

From the action of NH_n on Pol_n we get a homomorphism $NH_n \rightarrow End_{\Lambda_n}(Pol_n) = Mat(n!, \Lambda_n).$

Theorem (Categorification)

There is an isomorphism (of bialgebras)

$$\begin{array}{ccc} \bigoplus_{n \in \mathbb{N}} \mathcal{K}_0 \left(\mathcal{NH}_n - \mathrm{pmod} \right) & \longrightarrow & \mathbf{U}^+(\mathfrak{sl}_2) \\ & & & & \\ \left[\mathcal{NH}_n \right] & \mapsto & \mathcal{E}^n = [n] \mathcal{E}^{(n)} \\ & & & \\ \left[\mathcal{NH}_n \mathbf{e}_{1,1} \right] & \mapsto & \mathcal{E}^{(n)} \end{array}$$

Cyclotomic quotients (even case)

Given an integer $N \in \mathbb{N}$ we can define the cyclotomic quotient \mathcal{NH}_n^N by quotienting by the ideal $\langle x_1^N \rangle$.

Theorem

There is an isomorphism

$$\bigoplus_{n \in \mathbb{N}} \mathcal{K}_0\left(\mathcal{NH}_n^N - \text{pmod}\right) \quad \longrightarrow \quad V_N$$

where V_N is the integral version of the irreducible $\mathbf{U}_q(\mathfrak{sl}_2)$ -module of highest weight N.

This result relies on the fact that \mathcal{NH}_n^N is Morita equivalent to the cohomology ring of the Grassmannian Gr(k; N) of *k*-planes in \mathbb{C}^N .

Cohomology rings of Grassmannians

Let deg(c_i) = 2*i*, deg(\bar{c}_j) = 2*j*. Then there is a graded ring isomorphism

a

$$H^*(Gr(k, N)) \cong \mathbb{Z}[c_1, \ldots, c_k, , \bar{c}_1, \ldots, \bar{c}_{N-k}]/I_k$$

where I_k is the ideal generated by equating powers of t in $(1 + c_1t + c_2t^2 + \dots + c_kt^k)(1 + \overline{c}_1t + \dots + \overline{c}_{N-k}t^{N-k}) = 1.$

i.e. equating powers of *tⁿ* implies

$$\sum_{b=n} c_a \bar{c}_b = \delta_{n,0}.$$

Cohomology rings of Grassmannians

Let deg(c_i) = 2*i*, deg(\bar{c}_j) = 2*j*. Then there is a graded ring isomorphism

$$H^*(Gr(k,N)) \cong \mathbb{Z}[c_1,\ldots,c_k,,ar{c}_1,\ldots,ar{c}_{N-k}]/I_k$$

where I_k is the ideal generated by equating powers of t in $(1 + c_1 t + c_2 t^2 + \dots + c_k t^k)(1 + \overline{c}_1 t + \dots + \overline{c}_{N-k} t^{N-k}) = 1.$

i.e. equating powers of t^n implies

$$\sum_{a+b=n} c_a \bar{c}_b = \delta_{n,0}.$$

Notice the similarity with symmetric functions

$$(1 + \epsilon_1 t + \dots + \epsilon_k t^k)(1 + (-h_1)t + h_2 t^2 + \dots + (-1)^r h_r t^r + \dots) = 1.$$

We get the ring $H^*(Gr(k, N))$ from Λ_k by imposing the additional relation that $h_j = 0$ for j > N - k.

Idea:

Oddify everything we just discussed by finding an "odd" analog of the nilHecke algebra.

Odd NilHecke Generators

$$| \dots | \dots | := 1 \in \mathcal{NH}_n$$
$$| \dots | := x_r | \dots | \dots | := \partial_r$$

Relations

Aaron Lauda (USC)

Odd structures

Isotopy relations

Algebraic Isotopy Relations

$$\begin{aligned} \mathbf{x}_i \mathbf{x}_j &= -\mathbf{x}_j \mathbf{x}_i \quad (i \neq j), \\ \partial_i \partial_j &= -\partial_j \partial_i \quad (|i - j| > 1), \\ \mathbf{x}_i \partial_j &= -\partial_j \mathbf{x}_i \quad (i \neq j, j + 1). \end{aligned}$$

Aaron Lauda (USC)

Odd structures

Skew Polynomial representation

Define the ring of odd polynomials to be

$$OPol_n = \mathbb{Z}\langle x_1, \dots, x_n \rangle / \langle x_i x_j + x_j x_i = 0 \text{ for } i \neq j \rangle.$$

The symmetric group S_n acts as the ring endomorphism

$$s_i(x_j) = \begin{cases} -x_{i+1} & \text{if } j = i, \\ -x_i & \text{if } j = i+1, \\ -x_j & \text{otherwise.} \end{cases}$$

3 > 4 3 >

Skew Polynomial representation

Define the ring of odd polynomials to be

$$\operatorname{OPol}_n = \mathbb{Z}\langle x_1, \ldots, x_n \rangle / \langle x_i x_j + x_j x_i = 0 \text{ for } i \neq j \rangle.$$

The symmetric group S_n acts as the ring endomorphism

$$\mathbf{s}_i(\mathbf{x}_j) = \begin{cases} -\mathbf{x}_{i+1} & \text{if } j = i, \\ -\mathbf{x}_i & \text{if } j = i+1, \\ -\mathbf{x}_j & \text{otherwise.} \end{cases}$$

The odd divided difference operators are the linear operators ∂_i defined by

$$\partial_i(1) = 0,$$

 $\partial_i(x_j) = \begin{cases} 1 & \text{if } j = i, i+1, \\ 0 & \text{otherwise,} \end{cases}$

and the Leibniz rule

$$\partial_i(fg) = \partial_i(f)g + s_i(f)\partial_i(g) \text{ for all } f, g \in \mathbb{Z}_{\langle x_1, y_1, \dots, y_n \rangle_{\mathbb{Z}}} x_n \rangle_{\mathbb{Z}}$$

Odd Symmetric functions

Define the ring of odd symmetric polynomials as the subring

$$\mathrm{OA}_n = igcap_{i=1}^{n-1} \ker(\partial_i) = igcap_{i=1}^{n-1} \mathrm{im} (\partial_i) \quad \subset \mathrm{OPol}_n$$

By analogy with the even case, we introduce the *odd elementary symmetric polynomials*

$$\varepsilon_k(x_1,\ldots,x_n) = \sum_{1 \le i_1 < \cdots < i_k \le n} \widetilde{x}_{i_1} \cdots \widetilde{x}_{i_k}, \quad \text{where } \widetilde{x}_i = (-1)^{i-1} x_i$$

Example (n=3)

 $\varepsilon_1 = x_1 - x_2 + x_3$ $\varepsilon_2 = -x_1 x_2 + x_2 x_3 - x_2 x_3$ $\varepsilon_3 = -x_1 x_2 x_3$

Aaron Lauda (USC)

Odd structures

• The polynomials ε_r are odd symmetric.

Aaron Lauda	(USC)
-------------	-------

- The polynomials ε_r are odd symmetric.
- The ε_r give a basis for $O\Lambda_n$. There are other basis corresponding to complete $h_r = \sum_{1 \le i_1 \le \dots \le i_k \le n} \widetilde{x}_{i_1} \cdots \widetilde{x}_{i_k}$ and Schur symmetric functions

$$s_{\lambda} = \partial_{w_0}(x_1^{n-1+\lambda_1}x_2^{n-2+\lambda_2}\dots x_n^{\lambda_n})$$

with closely related combinatorics.

E N 4 E N

- The polynomials ε_r are odd symmetric.
- The ε_r give a basis for $O\Lambda_n$. There are other basis corresponding to complete $h_r = \sum_{1 \le i_1 \le \dots \le i_k \le n} \widetilde{x}_{i_1} \cdots \widetilde{x}_{i_k}$ and Schur symmetric functions

$$s_{\lambda} = \partial_{w_0}(x_1^{n-1+\lambda_1}x_2^{n-2+\lambda_2}\dots x_n^{\lambda_n})$$

with closely related combinatorics.

• The ring $O\Lambda_n$ is *noncommutative*. E.g.

$$\varepsilon_1\varepsilon_2 + \varepsilon_2\varepsilon_1 = 2\varepsilon_3.$$

E N 4 E N

- The polynomials ε_r are odd symmetric.
- The ε_r give a basis for $O\Lambda_n$. There are other basis corresponding to complete $h_r = \sum_{1 \le i_1 \le \dots \le i_k \le n} \widetilde{x}_{i_1} \cdots \widetilde{x}_{i_k}$ and Schur symmetric functions

$$\mathbf{s}_{\lambda} = \partial_{w_0}(\mathbf{x}_1^{n-1+\lambda_1}\mathbf{x}_2^{n-2+\lambda_2}\dots\mathbf{x}_n^{\lambda_n})$$

with closely related combinatorics.

• The ring $O\Lambda_n$ is *noncommutative*. E.g.

$$\varepsilon_1\varepsilon_2 + \varepsilon_2\varepsilon_1 = 2\varepsilon_3.$$

 Oddification: rings Λ_n and OΛ_n have the same graded rank and become isomorphic when coefficients are reduced modulo two.

- The polynomials ε_r are odd symmetric.
- The ε_r give a basis for $O\Lambda_n$. There are other basis corresponding to complete $h_r = \sum_{1 \le i_1 \le \dots \le i_k \le n} \widetilde{x}_{i_1} \cdots \widetilde{x}_{i_k}$ and Schur symmetric functions

$$\mathbf{s}_{\lambda} = \partial_{w_0}(\mathbf{x}_1^{n-1+\lambda_1}\mathbf{x}_2^{n-2+\lambda_2}\dots\mathbf{x}_n^{\lambda_n})$$

with closely related combinatorics.

• The ring $O\Lambda_n$ is *noncommutative*. E.g.

$$\varepsilon_1\varepsilon_2 + \varepsilon_2\varepsilon_1 = 2\varepsilon_3.$$

 Oddification: rings Λ_n and OΛ_n have the same graded rank and become isomorphic when coefficients are reduced modulo two.

Proposition

The ring of odd polynomials $OPol_n$ is a free left (resp. right $O\Lambda_n$) module with basis given by odd Schubert polynomials

$$\mathfrak{S}_w := \partial_{w_0 w^{-1}}(x_1^{n-1}x_2^{n-2}\ldots x_n^0)$$

This allows us to identify the endomorphism ring $\text{End}_{O\Lambda_n}(\text{OPol}_n)$ as a matrix ring $Mat(n!, O\Lambda_n)$. The action of \mathcal{ONH}_n on odd polynomials gives rise to

Theorem (Ellis,Khovanov, L)There is an isomorphism $\bigoplus_{n \in \mathbb{N}} \mathcal{K}_0 \left(\mathcal{ONH}_n - pmod \right) \longrightarrow \mathbf{U}^+(\mathfrak{sl}_2)$

Aaron Lauda (USC)

Odd structures

October 25th, 2014

20/22

Proposition

The ring of odd polynomials $OPol_n$ is a free left (resp. right $O\Lambda_n$) module with basis given by odd Schubert polynomials

$$\mathfrak{S}_w := \partial_{w_0 w^{-1}}(x_1^{n-1}x_2^{n-2}\ldots x_n^0)$$

This allows us to identify the endomorphism ring $\text{End}_{O\Lambda_n}(\text{OPol}_n)$ as a matrix ring $Mat(n!, O\Lambda_n)$. The action of \mathcal{ONH}_n on odd polynomials gives rise to

Theorem (Ellis, Khovanov, L)

There is an isomorphism

$$\bigoplus_{n \in \mathbb{N}} \mathcal{K}_0(\mathcal{ONH}_n - \text{pmod}) \longrightarrow \mathbf{U}^+(\mathfrak{sl}_2)$$

The algebras ONH_n were discovered independently by Kang-Kashiwara-Tshuchioka and are closely related to earlier work of Khongsap-Wang.

Aaron Lauda (USC)

Odd cyclotomic quotients ONH_n^N can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_1^N .

 Odd cyclotomic quotients also categorify irreducible U_q(sl₂)-representations.

Odd cyclotomic quotients ONH_n^N can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_1^N .

 Odd cyclotomic quotients also categorify irreducible U_q(sl₂)-representations.

Proposition (Ellis, Khovanov, L)

One can show that ONH_n^N is Morita equivalent to a noncommutative ring $OH^*(Gr(k; N))$ called the *odd cohomology of the Grassmannian*.

э

Odd cyclotomic quotients ONH_n^N can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_1^N .

 Odd cyclotomic quotients also categorify irreducible U_q(sl₂)-representations.

Proposition (Ellis, Khovanov, L)

One can show that \mathcal{ONH}_n^N is Morita equivalent to a noncommutative ring $OH^*(Gr(k; N))$ called the *odd cohomology of the Grassmannian*.

• Just like the usual case, $OH^*(Gr(k; N)) \cong O\Lambda_k / \langle h_r | r > N - k \rangle$.

э

Odd cyclotomic quotients ONH_n^N can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_1^N .

 Odd cyclotomic quotients also categorify irreducible U_q(sl₂)-representations.

Proposition (Ellis, Khovanov, L)

One can show that ONH_n^N is Morita equivalent to a noncommutative ring $OH^*(Gr(k; N))$ called the *odd cohomology* of the Grassmannian.

- Just like the usual case, $OH^*(Gr(k; N)) \cong O\Lambda_k / \langle h_r | r > N k \rangle$.
- The ring OH*(Gr(k; N)) has the same graded rank as H*(Gr(k; N)) and these rings become isomorphic when coefficients are reduced modulo two.

э

Odd cyclotomic quotients ONH_n^N can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_1^N .

 Odd cyclotomic quotients also categorify irreducible U_q(sl₂)-representations.

Proposition (Ellis, Khovanov, L)

One can show that ONH_n^N is Morita equivalent to a noncommutative ring $OH^*(Gr(k; N))$ called the *odd cohomology of the Grassmannian*.

- Just like the usual case, $OH^*(Gr(k; N)) \cong O\Lambda_k / \langle h_r | r > N k \rangle$.
- The ring OH*(Gr(k; N)) has the same graded rank as H*(Gr(k; N)) and these rings become isomorphic when coefficients are reduced modulo two.
- The ring OH*(Gr(k; N)) has a basis of appropriate odd Schur functions.

3

Covering Kac-Moody algebras

The existence of the even and the odd theories has a representation theoretic explanation via the work of Hill-Wang and Clark-Wang.

Introduce a parameter π with $\pi^2 = 1$.

A B b 4 B b

Covering Kac-Moody algebras

The existence of the even and the odd theories has a representation theoretic explanation via the work of Hill-Wang and Clark-Wang.

Introduce a parameter π with $\pi^2 = 1$.

• There is a novel new bar involution $\overline{q} = \pi q^{-1}$.

Aaron L	auda	(USC)
---------	------	-------

Odd structures

- A TE N - A TE N

Covering Kac-Moody algebras

The existence of the even and the odd theories has a representation theoretic explanation via the work of Hill-Wang and Clark-Wang.

Introduce a parameter π with $\pi^2 = 1$.

- There is a novel new bar involution $\overline{q} = \pi q^{-1}$.
- This leads to the first construction of canonical bases for super Lie algebras! (Positive parts for super Lie algebras Hill-Wang, entire quantum group in rank 1 by Clark-Wang.)

Aaron Lauda (USC)

Odd structures