Odd structures arising from categorified quantum groups

Aaron Lauda
(Joint with Alexander P. Ellis,
Mikhail Khovanov, and Heather Russell)

University of Southern California

October 25th, 2014

Motivation from Knot theory

The discovery of Khovanov homology motivated the study of categorified quantum $\mathfrak{s l}_{2}$.

Motivation from Knot theory

The discovery of Khovanov homology motivated the study of categorified quantum $\mathfrak{s l}_{2}$.

This categorification is closely connected to

- The geometry of flag varieties and Grassmannians
- The combinatorics of symmetric functions
- Hecke algebras in type A

Odd Khovanov homology

Khovanov's categorification of the Jones polynomial is not unique.
Ozsváth, Rasmussen, Szabó

Odd Khovanov homology

Khovanov's categorification of the Jones polynomial is not unique.
Ozsváth, Rasmussen, Szabó

- Both theories categorify the Jones polynomial

Odd Khovanov homology

Khovanov's categorification of the Jones polynomial is not unique.
Ozsváth, Rasmussen, Szabó

- Both theories categorify the Jones polynomial
- Both theories agree when coefficients are reduced modulo two

Odd Khovanov homology

Khovanov's categorification of the Jones polynomial is not unique.
Ozsváth, Rasmussen, Szabó

> Khovanov homology

Odd
Khovanov homology

Decategorification

Jones polynomial

- Both theories categorify the Jones polynomial
- Both theories agree when coefficients are reduced modulo two
- Shumakovitch showed that both theories are distinct

Idea: Utilize these discoveries in knot theory to discover new structures in geometric representation theory via the connection to quantum groups

Jones polynomial \longleftrightarrow Rep theory of quantum $\mathfrak{s l}_{2}$

Odd Khovanov homology

Odd categorified Rep theory of $\mathfrak{s l}_{2}$

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced mod 2.

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced $\bmod 2$.
- Odd theories should have many of the same combinatorial features as their classical counterparts.

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced $\bmod 2$.
- Odd theories should have many of the same combinatorial features as their classical counterparts.
- Noncommutativity will be an inherent feature of such oddifications.

Oddification

This suggests a program of identifying "odd" analogs of categorified quantum groups and related objects in geometric representation theory.

Oddification program: There should be new theories corresponding to classical representation theoretic objects.

- These theories should be distinct from classical theories.
- They should agree with the classical theories when coefficients are reduced $\bmod 2$.
- Odd theories should have many of the same combinatorial features as their classical counterparts.
- Noncommutativity will be an inherent feature of such oddifications. In this story the nilHecke algebra is the star of the show.

Generators for the NilHecke algebra

$$
\begin{gathered}
|\ldots| \ldots \mid:=1 \in \mathcal{N} \mathcal{H}_{n} \\
|\ldots \nmid \ldots|:=x_{r}|\ldots X \ldots|:=\partial_{r} \mid
\end{gathered}
$$

Relations

$$
=
$$

Isotopy relations

Algebraic Isotopy Relations

$$
\begin{aligned}
& x_{i} x_{j}=x_{j} x_{i} \quad(i \neq j), \\
& \partial_{i} \partial_{j}=\partial_{j} \partial_{i} \quad(|i-j|>1), \\
& x_{i} \partial_{j}=\partial_{j} x_{i} \quad(i \neq j, j+1) .
\end{aligned}
$$

Polynomial representation

The algebra $\mathcal{N H} H_{n}$ acts on the polynomial ring $\operatorname{Pol}_{n}:=\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with x_{i} acting by multiplication and ∂_{i} acting by divided difference operators

$$
\partial_{i}(f)=\frac{f-s_{i}(f)}{x_{i}-x_{i+1}} \quad f \in \operatorname{Pol}_{n}
$$

$s_{i}(f)$ is the action of the symmetric group S_{n} by permuting variables.

Polynomial representation

The algebra $\mathcal{N} \mathcal{H}_{n}$ acts on the polynomial ring $\operatorname{Pol}_{n}:=\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with x_{i} acting by multiplication and ∂_{i} acting by divided difference operators

$$
\partial_{i}(f)=\frac{f-s_{i}(f)}{x_{i}-x_{i+1}} \quad f \in \operatorname{Pol}_{n}
$$

$s_{i}(f)$ is the action of the symmetric group S_{n} by permuting variables.
Alternatively, we can define ∂_{i} by

$$
\partial_{i}(1)=0, \quad \partial_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } j=i \\ -1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

and the "Leibniz rule"

$$
\partial_{i}(f g)=\partial_{i}(f) g+s_{i}(f) \partial_{i}(g) \text { for all } f, g \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] .
$$

Symmetric functions

The ring of symmetric functions has many descriptions

$$
\Lambda_{n}=\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{S_{n}}=\bigcap_{i=1}^{n-1} \operatorname{ker}\left(\partial_{i}\right)=\bigcap_{i=1}^{n-1} \operatorname{im}\left(\partial_{i}\right)
$$

This ring can also be described as $\Lambda_{n} \cong \mathbb{Z}\left[\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right]$, where ε_{k} is the usual elementary symmetric polynomial

$$
\varepsilon_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}}
$$

of degree $2 k$ (since $\left.\operatorname{deg}\left(x_{i}\right)=2\right)$.
Example $(n=3)$

$$
\begin{aligned}
& \varepsilon_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3} \\
& \varepsilon_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3} \\
& \varepsilon_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}
\end{aligned}
$$

There are other nice bases for Λ_{n} such as

- complete symmetric functions

$$
h_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}}
$$

satisfying

$$
\sum_{a+b=n}(-1)^{b} \varepsilon_{a} h_{b}=\delta_{n, 0}
$$

There are other nice bases for Λ_{n} such as

- complete symmetric functions

$$
h_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}}
$$

satisfying

$$
\sum_{a+b=n}(-1)^{b} \varepsilon_{a} h_{b}=\delta_{n, 0}
$$

- Schur functions

$$
s_{\lambda}=\partial_{w_{0}}\left(x_{1}^{n-1+\lambda_{1}} x_{2}^{n-2+\lambda_{2}} \ldots x_{n}^{\lambda_{n}}\right)
$$

where w_{0} is the longest element of the symmetric group.

The ring of polynomials Pol_{n} is a free Λ_{n}-module of rank $n!$. Two natural basis for Pol_{n} as a free Λ_{n} module are

- The set $\left\{x_{1}^{\ell_{1}} x_{2}^{\ell_{2}} \ldots x_{n}^{\ell_{n}}\right\}$ where $0 \leq \ell_{i} \leq n-i$.
- The basis of Schubert polynomials

$$
\mathfrak{S}_{w}:=\partial_{w_{0} w^{-1}}\left(x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n}^{0}\right)
$$

for $w \in S_{n}$.

The ring of polynomials Pol_{n} is a free Λ_{n}-module of rank $n!$. Two natural basis for Pol_{n} as a free Λ_{n} module are

- The set $\left\{x_{1}^{\ell_{1}} x_{2}^{\ell_{2}} \ldots x_{n}^{\ell_{n}}\right\}$ where $0 \leq \ell_{i} \leq n-i$.
- The basis of Schubert polynomials

$$
\mathfrak{S}_{w}:=\partial_{w_{0} w^{-1}}\left(x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n}^{0}\right)
$$

$$
\text { for } w \in S_{n}
$$

From the action of $N H_{n}$ on Pol_{n} we get a homomorphism $N H_{n} \rightarrow \operatorname{End}_{\Lambda_{n}}\left(\operatorname{Pol}_{n}\right)=\operatorname{Mat}\left(n!, \Lambda_{n}\right)$.

Theorem (Categorification)

There is an isomorphism (of bialgebras)

$$
\begin{aligned}
\bigoplus_{n \in \mathbb{N}} K_{0}\left(\mathcal{N H}_{n}-\mathrm{pmod}\right) & \longrightarrow \mathbf{U}^{+}\left(\mathfrak{s l}_{2}\right) \\
{\left[\mathcal{N} \mathcal{H}_{n}\right] } & \mapsto E^{n}=[n] E^{(n)} \\
{\left[\mathcal{N} \mathcal{H}_{n} e_{1,1}\right] } & \mapsto E^{(n)}
\end{aligned}
$$

Cyclotomic quotients (even case)

Given an integer $N \in \mathbb{N}$ we can define the cyclotomic quotient $\mathcal{N H}_{n}^{N}$ by quotienting by the ideal $\left\langle x_{1}^{N}\right\rangle$.

Theorem

There is an isomorphism

$$
\bigoplus_{n \in \mathbb{N}} K_{0}\left(\mathcal{N H}_{n}^{N}-\operatorname{pmod}\right) \longrightarrow V_{N}
$$

where V_{N} is the integral version of the irreducible $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module of highest weight N.

This result relies on the fact that $\mathcal{N H}_{n}^{N}$ is Morita equivalent to the cohomology ring of the Grassmannian $\operatorname{Gr}(k ; N)$ of k-planes in \mathbb{C}^{N}.

Cohomology rings of Grassmannians

Let $\operatorname{deg}\left(c_{i}\right)=2 i, \operatorname{deg}\left(\bar{c}_{j}\right)=2 j$. Then there is a graded ring isomorphism

$$
H^{*}(\operatorname{Gr}(k, N)) \cong \mathbb{Z}\left[c_{1}, \ldots, c_{k}, \bar{c}_{1}, \ldots, \bar{c}_{N-k}\right] / I_{k}
$$

where I_{k} is the ideal generated by equating powers of t in

$$
\left(1+c_{1} t+c_{2} t^{2}+\cdots+c_{k} t^{k}\right)\left(1+\bar{c}_{1} t+\cdots+\bar{c}_{N-k} t^{N-k}\right)=1 .
$$

i.e. equating powers of t^{n} implies

$$
\sum_{a+b=n} c_{a} \bar{c}_{b}=\delta_{n, 0}
$$

Cohomology rings of Grassmannians

Let $\operatorname{deg}\left(c_{i}\right)=2 i, \operatorname{deg}\left(\bar{c}_{j}\right)=2 j$. Then there is a graded ring isomorphism

$$
H^{*}(\operatorname{Gr}(k, N)) \cong \mathbb{Z}\left[c_{1}, \ldots, c_{k}, \bar{c}_{1}, \ldots, \bar{c}_{N-k}\right] / I_{k}
$$

where I_{k} is the ideal generated by equating powers of t in

$$
\left(1+c_{1} t+c_{2} t^{2}+\cdots+c_{k} t^{k}\right)\left(1+\bar{c}_{1} t+\cdots+\bar{c}_{N-k} t^{N-k}\right)=1 .
$$

i.e. equating powers of t^{n} implies

$$
\sum_{a+b=n} c_{a} \bar{c}_{b}=\delta_{n, 0} .
$$

Notice the similarity with symmetric functions

$$
\left(1+\epsilon_{1} t+\cdots+\ldots \epsilon_{k} t^{\kappa}\right)\left(1+\left(-h_{1}\right) t+h_{2} t^{2}+\cdots+(-1)^{r} h_{r} t^{r}+\ldots\right)=1 .
$$

We get the ring $H^{*}(\operatorname{Gr}(k, N))$ from Λ_{k} by imposing the additional relation that $h_{j}=0$ for $j>N-k$.

Idea:

Oddify everything we just discussed by finding an "odd" analog of the nilHecke algebra.

Odd NilHecke Generators

$$
\begin{gathered}
|\cdots| \ldots \mid:=1 \in \mathcal{N} \mathcal{H}_{n} \\
|\ldots \phi \ldots|:=x_{r} \quad|\ldots X \ldots|:=\partial_{r}
\end{gathered}
$$

Relations

$$
=
$$

Isotopy relations

Algebraic Isotopy Relations

$$
\begin{aligned}
& x_{i} x_{j}=-x_{j} x_{i} \quad(i \neq j), \\
& \partial_{i} \partial_{j}=-\partial_{j} \partial_{i} \quad(|i-j|>1), \\
& x_{i} \partial_{j}=-\partial_{j} x_{i} \quad(i \neq j, j+1) .
\end{aligned}
$$

Skew Polynomial representation

Define the ring of odd polynomials to be

$$
\mathrm{OPol}_{n}=\mathbb{Z}\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left\langle x_{i} x_{j}+x_{j} x_{i}=0 \text { for } i \neq j\right\rangle
$$

The symmetric group S_{n} acts as the ring endomorphism

$$
s_{i}\left(x_{j}\right)= \begin{cases}-x_{i+1} & \text { if } j=i \\ -x_{i} & \text { if } j=i+1 \\ -x_{j} & \text { otherwise }\end{cases}
$$

Skew Polynomial representation

Define the ring of odd polynomials to be

$$
\mathrm{OPol}_{n}=\mathbb{Z}\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left\langle x_{i} x_{j}+x_{j} x_{i}=0 \text { for } i \neq j\right\rangle
$$

The symmetric group S_{n} acts as the ring endomorphism

$$
s_{i}\left(x_{j}\right)= \begin{cases}-x_{i+1} & \text { if } j=i \\ -x_{i} & \text { if } j=i+1 \\ -x_{j} & \text { otherwise }\end{cases}
$$

The odd divided difference operators are the linear operators ∂_{i} defined by

$$
\begin{aligned}
& \partial_{i}(1)=0, \\
& \partial_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } j=i, i+1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

and the Leibniz rule

$$
\partial_{i}(f g)=\partial_{i}(f) g+s_{i}(f) \partial_{i}(g) \text { for all } f, g \in \mathbb{Z}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\underline{\underline{\underline{1}}}}
$$

Odd Symmetric functions

Define the ring of odd symmetric polynomials as the subring

$$
\mathrm{O} \wedge_{n}=\bigcap_{i=1}^{n-1} \operatorname{ker}\left(\partial_{i}\right)=\bigcap_{i=1}^{n-1} \operatorname{im}\left(\partial_{i}\right) \quad \subset \mathrm{OPol}_{n}
$$

By analogy with the even case, we introduce the odd elementary symmetric polynomials

$$
\varepsilon_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1} \widetilde{x}_{i_{1}} \cdots \widetilde{x}_{i_{k}}, \quad \text { where } \widetilde{x}_{i}=(-1)^{i-1} x_{i}
$$

Example ($\mathrm{n}=3$)

$$
\begin{aligned}
& \varepsilon_{1}=x_{1}-x_{2}+x_{3} \\
& \varepsilon_{2}=-x_{1} x_{2}+x_{2} x_{3}-x_{2} x_{3} \\
& \varepsilon_{3}=-x_{1} x_{2} x_{3}
\end{aligned}
$$

Proposition (Ellis, Khovanov, L)

- The polynomials ε_{r} are odd symmetric.

Proposition (Ellis, Khovanov, L)

- The polynomials ε_{r} are odd symmetric.
- The ε_{r} give a basis for $\mathrm{O} \Lambda_{n}$. There are other basis corresponding to complete $h_{r}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} \widetilde{x}_{i_{1}} \cdots \widetilde{x}_{i_{k}}$ and Schur symmetric functions

$$
s_{\lambda}=\partial_{w_{0}}\left(x_{1}^{n-1+\lambda_{1}} x_{2}^{n-2+\lambda_{2}} \ldots x_{n}^{\lambda_{n}}\right)
$$

with closely related combinatorics.

Proposition (Ellis, Khovanov, L)

- The polynomials ε_{r} are odd symmetric.
- The ε_{r} give a basis for $\mathrm{O} \Lambda_{n}$. There are other basis corresponding to complete $h_{r}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} \widetilde{x}_{i_{1}} \cdots \widetilde{x}_{i_{k}}$ and Schur symmetric functions

$$
s_{\lambda}=\partial_{w_{0}}\left(x_{1}^{n-1+\lambda_{1}} x_{2}^{n-2+\lambda_{2}} \ldots x_{n}^{\lambda_{n}}\right)
$$

with closely related combinatorics.

- The ring $\mathrm{O} \Lambda_{n}$ is noncommutative. E.g.

$$
\varepsilon_{1} \varepsilon_{2}+\varepsilon_{2} \varepsilon_{1}=2 \varepsilon_{3}
$$

Proposition (Ellis, Khovanov, L)

- The polynomials ε_{r} are odd symmetric.
- The ε_{r} give a basis for $\mathrm{O} \Lambda_{n}$. There are other basis corresponding to complete $h_{r}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} \widetilde{x}_{i_{1}} \cdots \widetilde{x}_{i_{k}}$ and Schur symmetric functions

$$
s_{\lambda}=\partial_{w_{0}}\left(x_{1}^{n-1+\lambda_{1}} x_{2}^{n-2+\lambda_{2}} \ldots x_{n}^{\lambda_{n}}\right)
$$

with closely related combinatorics.

- The ring $\mathrm{O} \Lambda_{n}$ is noncommutative. E.g.

$$
\varepsilon_{1} \varepsilon_{2}+\varepsilon_{2} \varepsilon_{1}=2 \varepsilon_{3}
$$

- Oddification: rings Λ_{n} and $\mathrm{O} \Lambda_{n}$ have the same graded rank and become isomorphic when coefficients are reduced modulo two.

Proposition (Ellis, Khovanov, L)

- The polynomials ε_{r} are odd symmetric.
- The ε_{r} give a basis for $\mathrm{O} \Lambda_{n}$. There are other basis corresponding to complete $h_{r}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} \widetilde{x}_{i_{1}} \cdots \widetilde{x}_{i_{k}}$ and Schur symmetric functions

$$
s_{\lambda}=\partial_{w_{0}}\left(x_{1}^{n-1+\lambda_{1}} x_{2}^{n-2+\lambda_{2}} \ldots x_{n}^{\lambda_{n}}\right)
$$

with closely related combinatorics.

- The ring $\mathrm{O} \Lambda_{n}$ is noncommutative. E.g.

$$
\varepsilon_{1} \varepsilon_{2}+\varepsilon_{2} \varepsilon_{1}=2 \varepsilon_{3}
$$

- Oddification: rings Λ_{n} and $\mathrm{O} \Lambda_{n}$ have the same graded rank and become isomorphic when coefficients are reduced modulo two.

Proposition

The ring of odd polynomials OPol_{n} is a free left (resp. right $\mathrm{O} \wedge_{n}$) module with basis given by odd Schubert polynomials

$$
\mathfrak{S}_{w}:=\partial_{w_{0} w^{-1}}\left(x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n}^{0}\right)
$$

This allows us to identify the endomorphism ring $\operatorname{End}_{\mathrm{O} \Lambda_{n}}\left(\mathrm{OPol}_{n}\right)$ as a matrix ring $\operatorname{Mat}\left(n!, \mathrm{O} \wedge_{n}\right)$. The action of $\mathcal{O \mathcal { N }} \mathcal{H}_{n}$ on odd polynomials gives rise to

Theorem (Ellis,Khovanov, L)
There is an isomorphism

$$
\bigoplus_{n \in \mathbb{N}} K_{0}\left(\mathcal{O N} \mathcal{H}_{n}-\operatorname{pmod}\right) \quad \longrightarrow \mathbf{U}^{+}\left(\mathfrak{s l}_{2}\right)
$$

Proposition

The ring of odd polynomials OPol_{n} is a free left (resp. right $\mathrm{O} \wedge_{n}$) module with basis given by odd Schubert polynomials

$$
\mathfrak{S}_{w}:=\partial_{w_{0} w^{-1}}\left(x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n}^{0}\right)
$$

This allows us to identify the endomorphism ring $\operatorname{End}_{\mathrm{O} \wedge_{n}}\left(\mathrm{OPol}_{n}\right)$ as a matrix ring $\operatorname{Mat}\left(n!, \mathrm{O} \wedge_{n}\right)$. The action of $\mathcal{O} \mathcal{N H}_{n}$ on odd polynomials gives rise to

Theorem (Ellis,Khovanov, L)

There is an isomorphism

$$
\bigoplus_{n \in \mathbb{N}} K_{0}\left(\mathcal{O N} \mathcal{H}_{n}-\operatorname{pmod}\right) \longrightarrow \mathbf{U}^{+}\left(\mathfrak{s l}_{2}\right)
$$

The algebras $\mathcal{O} \mathcal{N H}_{n}$ were discovered independently by Kang-Kashiwara-Tshuchioka and are closely related to earlier work of Khongsap-Wang.

Odd cyclotomic quotients

Odd cyclotomic quotients $\mathcal{O} \mathcal{N H}_{n}^{N}$ can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_{1}^{N}.

- Odd cyclotomic quotients also categorify irreducible $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-representations.

Odd cyclotomic quotients

Odd cyclotomic quotients $\mathcal{O} \mathcal{N} \mathcal{H}_{n}^{N}$ can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_{1}^{N}.

- Odd cyclotomic quotients also categorify irreducible $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-representations.

Proposition (Ellis, Khovanov, L)

One can show that $\mathcal{O \mathcal { N }} \mathcal{H}_{n}^{N}$ is Morita equivalent to a noncommutative ring $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N))$ called the odd cohomology of the Grassmannian.

Odd cyclotomic quotients

Odd cyclotomic quotients $\mathcal{O} \mathcal{N} \mathcal{H}_{n}^{N}$ can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_{1}^{N}.

- Odd cyclotomic quotients also categorify irreducible $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-representations.

Proposition (Ellis, Khovanov, L)

One can show that $\mathcal{O \mathcal { N }} \mathcal{H}_{n}^{N}$ is Morita equivalent to a noncommutative ring $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N))$ called the odd cohomology of the Grassmannian.

- Just like the usual case, $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N)) \cong \mathrm{O} \Lambda_{k} /\left\langle h_{r} \mid r>N-k\right\rangle$.

Odd cyclotomic quotients

Odd cyclotomic quotients $\mathcal{O} \mathcal{N} \mathcal{H}_{n}^{N}$ can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_{1}^{N}.

- Odd cyclotomic quotients also categorify irreducible $\mathbf{U}_{q}\left(\mathfrak{S l}_{2}\right)$-representations.

Proposition (Ellis, Khovanov, L)

One can show that $\mathcal{O \mathcal { N }} \mathcal{n}_{n}^{N}$ is Morita equivalent to a noncommutative ring $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N))$ called the odd cohomology of the Grassmannian.

- Just like the usual case, $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N)) \cong \mathrm{O} \Lambda_{k} /\left\langle h_{r} \mid r>N-k\right\rangle$.
- The ring $O H^{*}(\operatorname{Gr}(k ; N))$ has the same graded rank as $H^{*}(\operatorname{Gr}(k ; N))$ and these rings become isomorphic when coefficients are reduced modulo two.

Odd cyclotomic quotients

Odd cyclotomic quotients $\mathcal{O} \mathcal{N} \mathcal{H}_{n}^{N}$ can be defined in the same way as ordinary cyclotomic quotients by quotienting by x_{1}^{N}.

- Odd cyclotomic quotients also categorify irreducible $\mathbf{U}_{q}\left(\mathfrak{s l}_{2}\right)$-representations.

Proposition (Ellis, Khovanov, L)

One can show that $\mathcal{O \mathcal { N }} \mathcal{n}_{n}^{N}$ is Morita equivalent to a noncommutative ring $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N))$ called the odd cohomology of the Grassmannian.

- Just like the usual case, $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N)) \cong \mathrm{O} \Lambda_{k} /\left\langle h_{r} \mid r>N-k\right\rangle$.
- The ring $O H^{*}(\operatorname{Gr}(k ; N))$ has the same graded rank as $H^{*}(\operatorname{Gr}(k ; N))$ and these rings become isomorphic when coefficients are reduced modulo two.
- The ring $\mathrm{OH}^{*}(\operatorname{Gr}(k ; N))$ has a basis of appropriate odd Schur functions.

Covering Kac-Moody algebras

The existence of the even and the odd theories has a representation theoretic explanation via the work of Hill-Wang and Clark-Wang. Introduce a parameter π with $\pi^{2}=1$.

Covering Kac-Moody algebras

Covering Kac-Moody algebras

The existence of the even and the odd theories has a representation theoretic explanation via the work of Hill-Wang and Clark-Wang. Introduce a parameter π with $\pi^{2}=1$.

Covering Kac-Moody algebras

- There is a novel new bar involution $\bar{q}=\pi q^{-1}$.

Covering Kac-Moody algebras

The existence of the even and the odd theories has a representation theoretic explanation via the work of Hill-Wang and Clark-Wang. Introduce a parameter π with $\pi^{2}=1$.

Covering Kac-Moody algebras

- There is a novel new bar involution $\bar{q}=\pi q^{-1}$.
- This leads to the first construction of canonical bases for super Lie algebras! (Positive parts for super Lie algebras Hill-Wang, entire quantum group in rank 1 by Clark-Wang.)

