# Modular representations of bismash products 

Susan Montgomery 2014

## Modular group representations: Brauer

$G$ finite group, $\mathbb{k}$ algebraically closed of char $p>2$.
Idea: Study $G$-reps over $\mathbb{k}$ by using $G$-reps over $\mathbb{C}$.
$(\mathbb{K}, R, \mathbb{k})$ is a $p$-modular system for $G$ if $R \supset \mathbb{Z}$ is a complete DVR with fraction field $\mathbb{K}, \mathbb{K}$ splits $G, \pi$ is a generator for the maximal ideal $P$ of $R$ and $\mathbb{k}=R / \pi R$.

If $|G|=p^{\alpha} m$ for $p \nmid m$, then $R$ contains $\omega$, a primitive $m$ th root of 1 .

Under the quotient map $f: R \rightarrow \mathbb{k}=R / \pi R$, $\bar{\omega}=f(\omega)$ is a primitive $m$ th root of $1 \mathrm{in} \mathbb{k}$.

Let $G_{p^{\prime}}:=\{x \in G \mid p \nmid o(x)\}$. For $x \in G_{p^{\prime}}$ and any irreducible $\mathbb{k} G$-rep $W$, the eigenvalues of $x$ on $W$ may be written as $\left\{\bar{\omega}^{i_{1}}, \ldots, \bar{\omega}^{i_{t}}\right\}$.

The Brauer character $\phi: G_{p^{\prime}} \rightarrow \mathbb{K}$ of $G$ afforded by $W$ is given by

$$
\phi(x)=\omega^{i_{1}}+\cdots+\omega^{i_{t}}
$$

The decomposition map is a homomorphism of abelian groups

$$
d: G_{0}(\mathbb{K} G) \rightarrow G_{0}(\mathbb{k} G)
$$

taking a class [V] in $G_{0}(\mathbb{K} G)$ to $[\bar{M}]$ in $G_{0}(\mathbb{k} G)$, where $M$ is any $R G$-lattice in $V$ with $\bar{M}:=M / \pi M$.

Moreover if $\chi$ is the $\mathbb{K}$-character for $V$, then $\left.\chi\right|_{G_{p^{\prime}}}$ is the Brauer character of $[\bar{M}]$.

Let $V_{1}, \ldots, V_{n}$ be irred $\mathbb{K}$-reps of $G$ with characters $\chi_{i}$, and $W_{1}, \ldots, W_{d}$ the irred $\mathbb{k}$-reps of $G$ with Brauer characters $\phi_{j}$. Then the $\left\{\phi_{j}\right\}$ are a basis for the $\mathbb{K}$-valued class functions on $G_{p^{\prime}}$. Thus

$$
\left.\chi_{i}\right|_{G_{p^{\prime}}}=\sum_{j} d_{i j} \phi_{j}, \text { for } d_{i j} \in \mathbb{Z}
$$

The $d_{i j}$ are the decomposition numbers, $D=\left[d_{i j}\right]$ is the decomposition matrix, and $C=D^{t} D$ is the $d \times d$ Cartan matrix.

Theorem(Brauer) $\operatorname{Det}(C)$ is a power of $p$.

## Bismash Products

Let $L=F G$ be a factorizable group; that is, $F, G \subset L$, $F \cap G=1$, and $L=F G$. Then also $L=G F$, and so for any $a \in F, x \in G$, there exist unique $a^{\prime} \in F, x^{\prime} \in G$ such that $x a=a^{\prime} x^{\prime}=(x \triangleright a)(x \triangleleft a)$.

Example: For $|G|=n, G \hookrightarrow S_{n}$ by left multiplication on $G$ itself. Also $S_{n-1} \subset S_{n}$ by fixing the last element of $G$. Then $G \cap S_{n-1}=1$ and $S_{n}=S_{n-1} G$ is a factorization.
$F$ does not act as automorphisms of $G$ :
using $S_{4}=S_{3} C_{4}$, let $x=(1234)^{2} \in C_{4}, a=(12) \in S_{3}$.
Then $x a=(321)(1234)^{-1}$, and so $x \triangleright(12)=(321)$.
For any field $\mathbb{E}$, the function algebra $\mathbb{E}^{G}=(\mathbb{E} G)^{*}$ is also a Hopf algebra, as is $\mathbb{E}^{F}$, using the transpose maps. $\mathbb{E}^{G}$ has a basis $\left\{p_{g} \mid g \in G\right\}$ dual to the basis of group elements for $\mathbb{E} G$. The actions $\triangleright$ and $\triangleleft$ induce group actions of $F$ on $\mathbb{E}^{G}$ and of $G$ on $\mathbb{E}^{F}$.

Let $H:=\mathbb{E}^{G} \rtimes \mathbb{E} F$ be the semidirect product algebra. Similarly $H^{*}=\mathbb{E}^{F} \rtimes \mathbb{E} G$ is an algebra.
$H=H(L, F, G)=\mathbb{E}^{G} \# \mathbb{E} F$ is a Hopf algebra, called the bismash product.

Its coalgebra structure is obtained by dualizing the algebra structure of $H^{*}$; thus $\Delta_{H}=\left(m_{H^{*}}\right)^{*}$.

Fix the basis $\mathcal{B}:=\left\{p_{x} \# a \mid x \in G, a \in F\right\}$ of $H$. On $\mathcal{B}$, the antipode is given by $S\left(p_{x} \# a\right)=p_{(x \triangleleft a)^{-1}} \#(x \triangleright a)^{-1}$, and so $S^{2}=i d$.

Representations of $H=k^{G} \# k F$ :
(DPR, Mason for $D(G)$ 1990, KMM 02)
For each orbit $\mathcal{O}$ of $F$ on $G$, fix $x \in \mathcal{O}=\mathcal{O}_{x}$ and let $F_{x}=$ stabilizer of $x$. Let $W_{x}$ be an irreducible rep of $F_{x}$, and define

$$
V_{x}:=\mathbb{C} G \otimes_{\mathbb{C} F_{x}} W_{x}
$$

$V_{x}$ is an $H$-representation, all $y \in G, b \in F, w \in W_{x}$, via

$$
p_{y} \cdot[b \otimes w]=\delta_{y \triangleleft b, x}(b \otimes w)
$$

$V_{x}$ is irreducible over $H$ and all irreducible modules arise in this way.

Assume as for groups that $(\mathbb{K}, R, \mathbb{k})$ is a $p$-modular system for $F$, and thus for the subgroups $F_{x}$. To define Brauer characters for $H$, we use a subset of $\mathcal{B}$, namely

$$
\mathcal{B}_{p^{\prime}}:=\left\{p_{y} \# a \mid y \in G, a \in F_{p^{\prime}} \cap F_{y}\right\}
$$

This set is closed under $S$, since if $a \in F_{y}$, then $S\left(p_{y} \# a\right)=p_{y^{-1}} \# y a y^{-1}$. Thus if $a \in F_{p^{\prime}} \cap F_{y}$, then also $y a y^{-1} \in F_{p^{\prime}} \cap F_{y}$.

Recall for $S_{4}=S_{3} C_{4}$, can have $x \triangleright(12)=(321) \notin F_{3^{\prime}}$.
[JM09; N05] Fix a set $T_{x}$ of right coset reps of $F_{x}$ in $F$. If $W=W_{x}$ is an irred $\mathbb{k} F_{x}$-module with character $\psi$, then the $H_{\mathrm{k}^{2}}$-module $\hat{W}$ has character $\hat{\psi}$ given by, for all $y \in G, a \in F$,

$$
\widehat{\psi}\left(p_{y} \# a\right)=\sum_{t \in T_{x}, t^{-1}}^{a t \in F_{x}} \delta_{y \triangleleft t, x} \psi_{x}\left(t^{-1} a t\right) .
$$

[JM 13] If $W$ has classical Brauer character $\phi: \mathbb{K} F_{x} \rightarrow \mathbb{K}$, define the Brauer character $\bar{\phi}: \mathcal{B}_{p^{\prime}} \rightarrow \mathbb{K}$ of $W$ to be

$$
\bar{\phi}\left(p_{y} \# a\right)=\sum_{t \in T_{x}, t^{-1} a t \in F_{x}} \delta_{y \triangleleft t, x} \phi\left(t^{-1} a t\right) .
$$

Let $s$ be the number of distinct orbits $\mathcal{O}$ of $F$ on $G$ and choose $x_{q} \in \mathcal{O}_{q}$, for $q=1, \ldots, s$. For each $F_{x_{q}}$ :

Let $\left\{\chi_{x_{q}, i}\right\}$ be the irreducible characters of $\mathbb{K} F_{x_{q}}$. Let $\left\{\psi_{x_{q}, j}\right\}$ be the irreducible characters of $\mathbb{k} F_{x_{q}}$ and let $\left\{\phi_{x_{q}, j}\right\}$ be their Brauer characters.
Let $D_{x_{q}}$ be the decomposition matrix for the $\chi_{x_{q}, i} \mid\left(F_{x_{q}}\right)_{p^{\prime}}$ in terms of the $\phi_{x_{q}, j}$.

Lifting $\chi_{x_{q}, i}$ to $\hat{\chi}_{x_{q}, i}$ on $H_{\mathbb{K}}$ and $\phi_{x_{q}, j}$ to $\hat{\phi}_{x_{q}, j}$ on $\mathcal{B}_{p^{\prime}}$,

$$
\left.\hat{\chi}_{x_{q},}\right|_{\mathcal{B}_{p^{\prime}}}=\sum_{j} \underset{d_{x_{q}, i j}}{\sim} \phi_{x_{q}, j}, \text { for } \hat{d_{x_{q}, i j}} \in \mathbb{Z}
$$

Then $\hat{D}_{x_{q}}=\left[{\hat{d_{x}}, i j}\right]$ is the decomposition matrix for the $\widehat{\chi}_{x_{q}, i \mid \mathcal{B}_{p^{\prime}}}$ in terms of the $\hat{\phi}_{x_{q}, j}$.

Theorem (1) $\hat{D}_{x_{q}}=D_{x_{q}}$
(2) The decomposition matrix for the $\left.\hat{\chi}_{i}\right|_{\mathcal{B}_{p^{\prime}}}$ with respect to the $\widehat{\phi}_{j}$ is the block matrix
$\hat{D}=\left[\begin{array}{llll}\hat{D}_{x_{1}} & 0 & \cdots & 0 \\ 0 & \hat{D}_{x_{2}} & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \hat{D}_{x_{s}}\end{array}\right]$
where $\hat{D}_{x_{q}}$ is the decomposition matrix of $\left.\hat{\chi}_{x_{q},}\right|_{\mathcal{B}_{p^{\prime}}}$ with respect to $\hat{\phi}_{x_{q}, j}$.

As for groups, $\hat{C}=\hat{D}^{t} \hat{D}$ is called the Cartan matrix.
Theorem: $\operatorname{Det}(\widehat{C})$ is a power of $p$, so is odd.
Proof: Apply Brauer's theorem to each block $\widehat{D}_{x_{q}}$.
Frobenius-Schur indicators

A bilinear form is $H$-invariant if
$\sum\left\langle h_{1} \cdot v, h_{2} \cdot w\right\rangle=\varepsilon(h) 1_{\mathbb{E}}$ for all $h \in H, v, w \in V$.

Frobenius-Schur (1906) did case of $\mathbb{C} G$. Thompson (1986) case of char $p>0$.

Theorem [GM09] Let $H$ be fin dim over $\mathbb{E}$, split by $\mathbb{E}$, with $S^{2}=i d$, and let $V$ be an irred $H$-module.
Then $V$ has a well-defined Frobenius-Schur indicator $\nu(V) \in\{0,1,-1\}$. Moreover
(1) $\nu(V)=0 \Longleftrightarrow V^{*} \neq V$.
(2) $\nu(V)=1$ (respectively -1 ) $\Longleftrightarrow V$ admits a nondegenerate $H$-invariant symmetric (resp., alternating) bilinear form.

We prove an analog for bismash products of a theorem of J. Thompson (1986).

Theorem: (Jedwab-M 13) Let $\mathbb{k}$ be algebraically closed of characteristic $p>2, L=F G$ a factorizable group, and ( $\mathbb{K}, R, \mathbb{k}$ ) a $p$-modular system for $F$. Consider the bismash products $H_{\mathbb{C}}=\mathbb{C}^{G} \# \mathbb{C} F$ and $H_{\mathbb{k}}=\mathbb{k}^{G} \# \mathbb{k} F$.

If $\psi=\psi^{*}$ is an irreducible $H_{\mathrm{k}_{\mathrm{k}}}$-character with Brauer character $\phi$, then there is an irreducible $\mathbb{K}$-character $\chi=\chi^{*}$ of $H_{\mathbb{K}}$ such that $d\left(\left.\chi\right|_{\mathcal{B}_{p^{\prime}}}, \phi\right)$ is odd.
Moreover for such a $\chi, \nu(\chi)=\nu(\psi)$.

Corollary: (Jedwab-M 13) If all irreducible $H_{\mathbb{C}}=\mathbb{C}^{G} \# \mathbb{C} F$ modules have Schur indicator +1 (respectively $\pm 1$ ), the same is true for all irreducible $H_{\mathbb{k}}$-modules.

Theorem: (Timmer 2014) For $G$ of order $n$, consider $S_{n}=S_{n-1} G$ as above and let $H=\mathbb{C}^{G} \# \mathbb{C} S_{n-1}$. Then $H$ is totally orthogonal for all $n$.
(J-M 09) case of $S_{n}=S_{n-1} C_{n}$.

Some ingredients in the proof:
Recall the $p$-modular system ( $\mathbb{K}, R, \mathbb{k}$ ), where $\mathbb{Q} \subset \mathbb{K}$ and $\mathbb{K}$ splits $H_{\mathbb{Q}}$.

1. For $V$ an $H_{\mathbb{K}}$-module, an $R \mathcal{B}$-lattice in $V$ is a fin gen $R \mathcal{B}$-submodule $L$ of $V$ such that $\mathbb{K} L=V$.
2. For $M$ a fin gen $H_{\mathbb{E}^{-}}$module with a non-degen bilinear $H_{\mathbb{E}^{-}}$invariant symmetric or skew form, let $M_{1}$ be max in $M$ with $\left\langle M_{1}, M_{1}\right\rangle=0$, and let $M_{1}{ }^{\perp}=\left\{m \in M \mid\left\langle m, M_{1}\right\rangle=\right.$ $0\}$.
The Witt kernel of $M$ is $\mathcal{W}(M):=M_{1}^{\perp} / M_{1}$.

The blocks in $H_{\mathrm{lk}}$ correspond to the blocks in $R \mathcal{B}$, by using the decomposition map and the remark about indecomposable modules.

Problem: Unfortunately $\phi^{*}=\phi$ does NOT imply $\hat{\phi}^{*}=$ $\widehat{\phi}$, nor conversely.

However if $\phi^{*}=\phi$, then the block $B$ of $R \mathcal{B}$ containing $\hat{\phi}$ satisfies $B^{*}=B$. Thus in the decomposition of any $\hat{\chi}$ in $B$, the $\hat{\phi}$ and $\widehat{\phi}^{*}$ appear in pairs, unless they are self-dual.
Get that the Cartan matrix for the self-dual $\hat{\chi}_{i}$ 's has odd determinant.

