Applications of geometry to modular representation theory

Julia Pevtsova University of Washington, Seattle

October 25, 2014

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
0000	0000	0000	0000	0000	0000

G - finite group, *k* - field.

Study *Representation theory of G over the field k*:

Let *M* be a vector space over *k*, let *G* act on *M* via linear transformations:

 $G \times M \longrightarrow M.$

Equivalently, if $\dim_k M = n$,

$$G \longrightarrow \operatorname{Aut}_k(M) \cong \operatorname{GL}_n(k)$$

92 HEINRICH MASCHKE: HIS LIFE AND WORK. [Nov.,

Perhaps of even greater importance is the following theorem * to which Maschke was led in the course of the proof of his cyclotomic theorem : Every finite group of linear substitutions, all of whose substitutions contain in the same place (not in the principal diagonal) a coefficient equal to zero, is intransitive, i. e., it can be so transformed that the new variables fall into a number of sets such that the variables of each set are transformed among themselves. In Burnside's terminology, the essential part of the theorem may be briefly formulated as follows: Every group of linear substitutions of finite order is completely reducible.

Heinrich Maschke 1853-1908

Bulletin of the AMS, 1908

Theorem (Maschke, 1898)

Let $G \to \operatorname{GL}_n(\mathbb{C})$ be a complex matrix representation of a finite group G, and assume that all matrices corresponding to the elements of the group have the form $\begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$, where the dimension of A_1 is a fixed number r < n. Then the representation is equivalent to the one of the same form where all submatrices B are equal to 0.

INDECOMPOSABLE VS. IRREDUCIBLE

A representation is called *reducible* if it has a subrepresentation

 $0 \neq M_1 \subsetneq M$.

Otherwise, it is *irreducible* or *simple*.

A representation is called *indecomposable* if it does not split as a direct sum of subrepresentations:

 $M \not\cong M_1 \oplus M_2.$

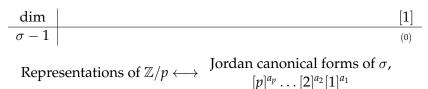
In **char** 0, Maschke's theorem \Rightarrow indecomposable = irreducible.

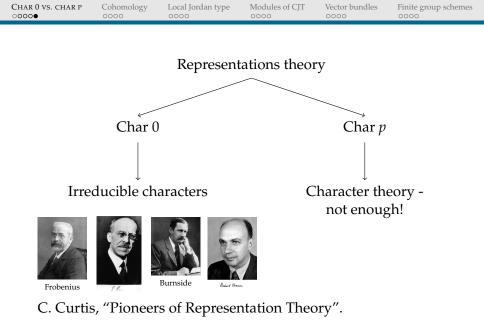
In **char** *p*, there are tons of indecomposable modules which are not irreducible: Maschke's theorem fails miserably!

MODULAR CASE: char k = p

Table: Indecomposable representations of $G = \mathbb{Z}/p = \langle \sigma \rangle$

Table: Irreducible representations of $G = \mathbb{Z}/p = \langle \sigma \rangle$





Char 0 vs. char p 00000	Cohomology ●○○○	Local Jordan type 0000	Modules of CJT 0000	Vector bundles 0000	Finite group schemes

COHOMOLOGY

From now on:
$$|k = \overline{\mathbb{F}}_p$$
, *p* divides $|G|$.

Representation theory of G (over k) is almost always wild: it is impossible to classify indecomposable modules.

Cyclic group \mathbb{Z}/p is a rare - and useful - exception.

To navigate this wild territory, find useful invariants. (1) Irreducible \neq indecomposable \Rightarrow lots of non-split extensions

$$0 \rightarrow M_1 \rightarrow M \rightarrow M_2 \rightarrow 0$$

(2) The functor $M \mapsto M^G$ is not exact \Rightarrow study its derived functors

(1) + (2) \Rightarrow cohomology $H^*(G, M)$.

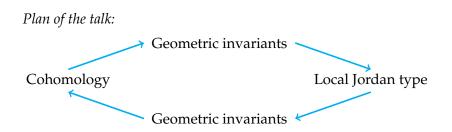
Origins - topology, Eilenberg-Steenrod.

D. Quillen, "The spectrum of an equivariant cohomology ring I, II," Ann. Math. 94 (1971)

 \implies new chapter in modular representation theory.

 $G \rightsquigarrow \operatorname{Spec} H^*(G, k) = |G|$

an affine algebraic variety.

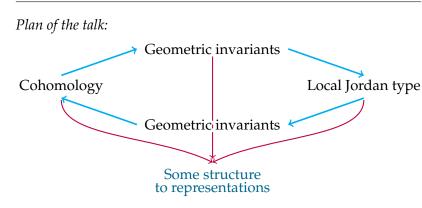


D. Quillen, "The spectrum of an equivariant cohomology ring I, II," Ann. Math. 94 (1971)

 \implies new chapter in modular representation theory.

 $G \rightsquigarrow \operatorname{Spec} H^*(G, k) = |G|$

an affine algebraic variety.



CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	0000	0000	0000

QUILLEN STRATIFICATION

 $E = (\mathbb{Z}/p)^{\times n}$ - an elementary abelian *p*-group of rank *n*.

$$H^*(E,k) = k[Y_1,\ldots,Y_n] \otimes \underbrace{\Lambda^*(s_1,\ldots,s_n)}_{\text{nilpotents}}$$

$$|E| = \operatorname{Spec} H^*(E, k) = \operatorname{Spec} k[Y_1, \dots, Y_n] \simeq \mathbb{A}^n$$

Proj $H^*(E, k) = \mathbb{P}^{n-1}$

Theorem (Quillen, 1971)

 $|G| = \operatorname{Spec} H^*(G, k)$ is stratified by $|E| \subset |G|$, where $E \subset G$ runs over all elementary abelian *p*-subgroups of *G*.

Corollary (Atiyah-Swan conjecture)

Krull dim $H^*(G, k) = \max_{E \subset G} \operatorname{rk} E$

SUPPORT VARIETIES FOR MODULES

Alperin-Evens, Carlson:

$$M \xrightarrow{\text{supp } M} \cap \\ Proj H^*(G,k)$$

 $\sup M$ - an algebraic variety defined in terms of the action of $H^*(G, k)$ on $\operatorname{Ext}^*(M, M)$.

- Quillen stratification theorem for supp M
- Realization (modules are not only "wild" but ubiquitous): For any closed subvariety $X \subset \operatorname{Proj} H^*(G, k)$, there exists a finite dimensional representation M such that supp M = X
- Tensor product theorem: supp $M \cap \operatorname{supp} N = \operatorname{supp} M \otimes N$

LOCAL JORDAN TYPE

Carlson: supp M can be described in an "elementary" way. Need notation:

$$E = (\mathbb{Z}/p)^{\times n}$$
. Choose generators $\sigma_1, \ldots, \sigma_n$.
Let $x_i = \sigma_i - 1$.

The group algebra

$$kE = \frac{k[\sigma_1, \dots, \sigma_n]}{(\sigma_1^p - 1, \dots, \sigma_n^p - 1)} \simeq \frac{k[x_1, \dots, x_n]}{(x_1^p, \dots, x_n^p)}$$

thanks to the "freshman calculus rule": $\sigma_i^p - 1 = (\sigma_i - 1)^p$.

{Representations of E} $\stackrel{\sim}{\longleftrightarrow}$ {kE - modules}

Char 0 vs. char p 00000	Cohomology 0000	Local Jordan type ○●○○	Modules of CJT 0000	Vector bundles 0000	Finite group schemes
Local ap	proach:				

$$\lambda = (\lambda_1, \dots, \lambda_n) \longmapsto X_\lambda = \lambda_1 x_1 + \dots + \lambda_n x_n \in kE$$

For *M* a *kE*-module,

$$M\longmapsto \{ \quad JType(X_{\lambda}, M) \mid \lambda \in k^n \}$$

Dade, Carlson: $\langle X_{\lambda} + 1 \rangle \simeq \mathbb{Z}/p \subset kE$ - cyclic shifted subgroup.

Table: Indecomposable Jordan blocks for $JType(X_{\lambda}, M)$

name	[p]	[p - 1]	 [3]	[2]	[1]
block	$\begin{pmatrix} 0 & 1 & 0 & & \\ 0 & 0 & 1 & 0 & \\ & 0 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ & & 0 & 0 & 1 \\ & & & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & & \\ 0 & 0 & 1 & 0 & \\ & 0 & 0 & 1 & 0 \\ & \vdots & \vdots & \vdots & 1 \\ & & & 0 & 0 \end{pmatrix}$	 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	(0)
		$M\} \longleftrightarrow$			

WHAT CAN BE DETECTED LOCALLY?

Theorem (Dade, 1978, "Dade's Lemma")

Let $E = (\mathbb{Z}/p)^{\times n}$, and let M be a finite dimensional kE-module. Then M is free if and only if

 $JType(X_{\lambda}, M) = [p]^m$

for every $\lambda \in k^n \setminus \{0\}$ *.*

Equivalently, the restriction of *M* to every cyclic shifted subgroup $\langle X_{\lambda} + 1 \rangle$ is free.

Theorem (Avrunin-Scott, 1982)

$$\underbrace{\sup M}_{\text{cohomology}} = \underbrace{\{\lambda = [\lambda_1 : \ldots : \lambda_n] \in \mathbb{P}^{n-1} \mid \text{JType}(\lambda, M) \neq [p]^m\}}_{\text{local approach}}$$

Corollary supp $M \cap$ supp N = supp $M \otimes N$

Char 0 vs. char p 00000	Cohomology 0000	Local Jordan type ○○○●	Modules of CJT 0000	Vector bundles 0000	Finite group schemes

In a joint work with E. Friedlander, the *local approach* has been generalized to any *finite group (scheme)* via the notion of π -points. We proved

- Avrunin-Scott's theorem (local approach to supports = cohomological approach)
- Appropriate analogue of Quillen stratification
- Tensor product theorem for supports

The theory of π -points led to discovery of a new class of modules which turned out to be very interesting even for elementary abelian *p*-groups: modules of constant Jordan type.

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	●000	0000	0000

MODULES OF CONSTANT JORDAN TYPE

$$E = (\mathbb{Z}/p)^{\times n}, kE = k[x_1, \dots, x_n]/(x_1^p, \dots, x_n^p),$$

$$\lambda = (\lambda_1, \dots, \lambda_n), X_\lambda = \lambda_1 x_1 + \dots + \lambda_n x_n.$$

Definition [Carlson-Friedlander-P., 2008]

M is a module of constant Jordan type if $JType(X_{\lambda}, M)$ is independent of $\lambda \neq 0$.

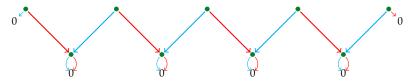
Friedlander-P-Suslin, 2007: the property of constant Jordan type is independent of the choice of generators of *E*.

Special case of a much more general theorem: maximal Jordan type of a module for any finite group scheme is well-defined.

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:



PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:

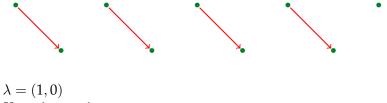
$$\begin{split} \lambda &= (1,0) \\ X_{\lambda} &= \lambda_1 x_1 + \lambda_2 x_2 = x_1 \\ \text{JType}(x_1,M) &= ? \end{split}$$

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	0000	0000	0000

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ M is a *kE*-module, dim M = 9Basis of M: green dots •. Action of E: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:



$$X_{\lambda} = \lambda_1 x_1 + \lambda_2 x_2 = x_1$$

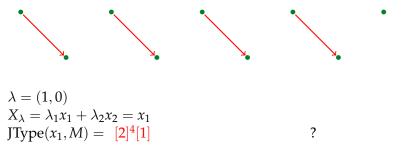
JType(x₁, M) = ?

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	0000	0000	0000

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ M is a *kE*-module, dim M = 9Basis of M: green dots •. Action of E: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:



PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:

$$\begin{split} \lambda &= (1,0) \\ X_\lambda &= \lambda_1 x_1 + \lambda_2 x_2 = x_1 \\ \text{JType}(x_1,M) &= \textbf{[2]}^4 \textbf{[1]} \end{split}$$

 $\lambda = (0, 1)$ $X_{\lambda} = \lambda_1 x_1 + \lambda_2 x_2 = x_2$ JType(x₂, M) = ?

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:

$$\begin{split} \lambda &= (1,0) \\ X_\lambda &= \lambda_1 x_1 + \lambda_2 x_2 = x_1 \\ \text{JType}(x_1,M) &= \textbf{[2]}^4 \textbf{[1]} \end{split}$$

 $\lambda = (0, 1)$ $X_{\lambda} = \lambda_1 x_1 + \lambda_2 x_2 = x_2$ JType(x₂, M) =

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:

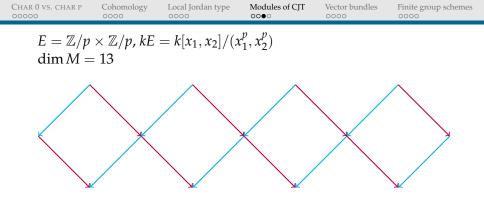
$$\begin{split} \lambda &= (1,0) \\ X_\lambda &= \lambda_1 x_1 + \lambda_2 x_2 = x_1 \\ \text{JType}(x_1,M) &= \textbf{[2]}^4 \textbf{[1]} \end{split}$$

PICTORIAL EXAMPLES

 $E = \mathbb{Z}/p \times \mathbb{Z}/p, kE = k[x_1, x_2]/(x_1^p, x_2^p)$ *M* is a *kE*-module, dim *M* = 9 Basis of *M*: green dots •. Action of *E*: $x_1 \searrow x_2 \checkmark$

"Picture" of *M*:

Indeed, *M* is a module of Constant Jordan type $[2]^4[1]$.



$$\begin{split} \lambda &= (1,0) & \lambda = (0,1) \\ X_{\lambda} &= \lambda_1 x_1 + \lambda_2 x_2 = x_1 & X_{\lambda} = \lambda_1 x_1 + \lambda_2 x_2 = x_2 \\ J \text{Type}(x_1,M) &= [3]^3 [2]^2 & J \text{Type}(x_2,M) = [3]^3 [2]^2 \end{split}$$

M is a module of constant Jordan type only for p=5. For p > 5,

$$JType(x_1 + x_2, M) = [3]^4[1]$$

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	0000	0000	0000

REALIZATION OF JORDAN TYPES

Question

Which Jordan types can be realized with modules of constant Jordan type?

Theorem (Benson, 2010)

Assume $\operatorname{rk} E \ge 2$, $p \ge 5$. There does not exist a module of constant Jordan type

[p]^a[2]

Conjectures of Suslin, Rickard restricting possible Jordan types

- wide open.

Most recent progress - Benson, Baland, using geometric methods.

REALIZATION OF JORDAN TYPES

Question

Which Jordan types can be realized with modules of constant Jordan type?

Theorem (Benson, 2010)

Assume $\operatorname{rk} E \ge 2$, $p \ge 5$. There does not exist a module of constant Jordan type

$[p]^{a}[j]$

 $2 \le j \le p-2.$

Conjectures of Suslin, Rickard restricting possible Jordan types

- wide open.

Most recent progress - Benson, Baland, using geometric methods.

We still know little about the wild representation theory of *E*. J. Carlson, E. Friedlander, A. Suslin, "Modules for $\mathbb{Z}/p \times \mathbb{Z}/p$ ", Comment. Math. Helv. 86 (2011). What can we do? Compare *kE*-modules to another category we know little about!

"Globalize" the action of X_{λ} on a *kE*-module *M*.

 $kE = k[x_1, \dots, x_n] / (x_1^p, \dots, x_n^p)$ $k[Y_1, \dots, Y_n] \text{ - homogeneous coordinate ring of } \mathbb{P}^{n-1}$ $\Theta = x_1 \otimes Y_1 + \dots + x_n \otimes Y_n \in kE \otimes k[Y_1, \dots, Y_n]$ $X_{\lambda} = \lambda_1 x_1 + \dots + \lambda_n x_n \text{ - specialization of } \Theta \text{ under}$ $(Y_1, \dots, Y_n) \mapsto (\lambda_1, \dots, \lambda_n)$

$$\Theta_M: M\otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M\otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

Specializing at $\lambda = [\lambda_1 : \ldots : \lambda_n] \quad \rightsquigarrow \quad \text{action of } X_\lambda \text{ on } M.$

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	0000	0000	0000

FROM MODULES OF CJT TO VECTOR BUNDLES

$$\Theta_M: M\otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M\otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

$$\Theta_M(m\otimes f)=\sum x_im\otimes Y_if$$

Theorem (Friedlander-P., 2008)

FROM MODULES OF CJT TO VECTOR BUNDLES

$$\Theta_M: M\otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M\otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

$$\Theta_M(m\otimes f)=\sum x_im\otimes Y_if$$

Theorem (Friedlander-P., 2008)

If M is a module of constant Jordan type for an elementary abelian p-group E of rank n, then

 $\operatorname{Ker} \Theta_M, \operatorname{Im} \Theta_M, \operatorname{Coker} \Theta_M$

are algebraic vector bundles on \mathbb{P}^{n-1} .

FROM MODULES OF CJT TO VECTOR BUNDLES

$$\Theta_M: M \otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M \otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

$$\Theta_M(m\otimes f)=\sum x_im\otimes Y_if$$

Theorem (Friedlander-P., 2008)

If M is a module of constant Jordan type for a restricted Lie algebra g, then

$$\operatorname{Ker} \Theta_M, \operatorname{Im} \Theta_M, \operatorname{Coker} \Theta_M$$

are algebraic vector bundles on the projectivization of the nilpotent cone $\mathcal{N}(\mathfrak{g})$.

FROM MODULES OF CJT TO VECTOR BUNDLES

$$\Theta_M: M \otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M \otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

$$\Theta_M(m\otimes f)=\sum x_im\otimes Y_if$$

Theorem (Friedlander-P., 2008)

If M is a module of constant Jordan type for an infinitesimal group scheme G, then

Ker
$$\Theta_M$$
, Im Θ_M , Coker Θ_M

are algebraic vector bundles on $\operatorname{Proj} H^*(G, k)$.

FROM MODULES OF CJT TO VECTOR BUNDLES

$$\Theta_M: M\otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M\otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

$$\Theta_M(m\otimes f)=\sum x_im\otimes Y_if$$

Theorem (Friedlander-P., 2008)

If M is a module of constant Jordan type for an elementary abelian p-group E of rank n, then

 $\operatorname{Ker} \Theta_M, \operatorname{Im} \Theta_M, \operatorname{Coker} \Theta_M$

are algebraic vector bundles on \mathbb{P}^{n-1} .

BUNDLES ON \mathbb{P}^n

Horrocks-Mumford bundle, 1972, an indecomposable rank 2 bundle on \mathbb{P}^4 with 15000 symmetries.

Reconstructed by D. Benson from a $(\mathbb{Z}/p)^5$ -module of dim 30 via the correspondence given by Θ .

Open Question

Does there exist an indecomposable rank 2 algebraic vector bundle on \mathbb{P}^n , $n \ge 6$?

Hartshorne's conjecture: NO.

For p = 2, the Tango¹ bundle of rank 2 on \mathbb{P}^5 is an indecomposable bundle of rank 2.

¹Tango, Hiroshi - Japanese mathematician

REALIZATION FOR VECTOR BUNDLES

$$\Theta_M: M \otimes \mathcal{O}_{\mathbb{P}^{n-1}} \longrightarrow M \otimes \mathcal{O}_{\mathbb{P}^{n-1}}(1).$$

$$\mathcal{F}_i(M) := rac{\operatorname{Ker} \Theta_M \cap \operatorname{Im} \Theta_M^{i-1}}{\operatorname{Ker} \Theta_M \cap \operatorname{Im} \Theta_M^i}$$

M - module of CJT $[p]^{a_p} \dots [1]^{a_1} \quad \Rightarrow \quad \dim \mathcal{F}_i(M) = a_i.$

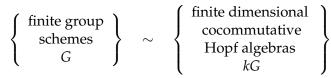
Theorem (Benson-P., 2012)

For any vector bundle \mathcal{F} on \mathbb{P}^{n-1} , there exists a kE-module M of constant Jordan type such that

(i) if p = 2, then $\mathcal{F}_1(M) \cong \mathcal{F}$.

(ii) *if p is odd, then* $\mathcal{F}_1(M) \cong F^*(\mathcal{F})$ *, where* $F \colon \mathbb{P}^n_k \to \mathbb{P}^n_k$ *is the Frobenius morphism.*

FINITE GROUP SCHEMES



For geometrically minded: $kG = k[G]^* = \text{Hom}_k(k[G], k)$.

 $\{\text{Representations of } G \text{ over } k\} \qquad \longleftrightarrow \qquad \{kG \text{-modules }\}$

Examples:

- Finite groups. *kG* is the group algebra
- Restricted Lie algebras. For G algebraic group (GL_n, SL_n, Sp_{2n}, SO_n), g = Lie G
- Frobenius kernels $\mathcal{G}_{(r)} = \operatorname{Ker} F^{(r)} : \mathcal{G} \to \mathcal{G}$

00000 0000 0000	0000	0000	•000 ⁻

Local approach for a finite group (scheme) *G*: Replace $X_{\lambda} = \lambda_1 x_1 + \ldots + \lambda_n x_n \in kE$ with π -points

 $\alpha: k[t]/t^p \to kG$

Theorem (Dade's lemma revisited)

Let G be a finite group scheme, and M be a kG-module. Then M is projective if and only if for every field extension K/k and every flat algebra map $\alpha : K[t]/t^p \to KG_K$, the $K[t]/t^p$ -module $\alpha^*(M_K)$ is projective.

Benson-Carlson-Rickard, Bendel, Pevtsova, Benson-Iyengar-Krause-Pevtsova

Important: holds for infinite-dimensional modules.

CHAR 0 VS. CHAR P	Cohomology	Local Jordan type	Modules of CJT	Vector bundles	Finite group schemes
00000	0000	0000	0000	0000	0000

It is impossible to classify indecomposable modules for kG, but we can classify equivalence classes of modules "up to extensions".

 $G \rightsquigarrow \operatorname{stmod} kG$

Applying the most general version of Dade's lemma, the theory of support varieties and π -points, and ideas from topology (Bousfield localization), one can "stratify" stmod kG with $\operatorname{Proj} H^*(G, k)$ for any finite group scheme G:

 $\left\{ \begin{array}{c} \text{Thick tensor ideal} \\ \text{subcategories} \\ \text{of stmod} kG \end{array} \right\} \sim \left\{ \begin{array}{c} \text{Subsets of } \operatorname{Proj} H^*(G,k) \\ \text{closed under} \\ \text{specialization} \end{array} \right\}$

Precursors/motivation: Devinatz-Hopkins-Smith (stable homotopy theory), Neeman, Thomason (AG).

BIG StMod G CATEGORY

D. Benson, S. Iyengar, H. Krause, "*Stratifying modular* representations of finite groups", Ann. of Math. 174 (2011): StMod kG for a finite group is "stratified" by Proj $H^*(G,k)$:

Localizing tensor ideal subcategories of StMod *kG*

$$\begin{cases} Subsets of \\ Proj H^*(G, k) \end{cases}$$

Techniques above (local Jordan type and π -points), combined with Benson-Iyengar-Krause theory of local cohomology functors and support, yielded a new, much shorter proof of more topological flavor of this classification (Benson-Iyengar-Krause-P., in progress).

Char 0 vs. char p 00000	Cohomology 0000	Local Jordan type 0000	Modules of CJT 0000	Vector bundles 0000	Finite group schemes ○○○●

QUIZ!

 $E = (\mathbb{Z}/2)^{\times 3}$

THANK YOU