Exponential Maps In Characteristic p (featuring: One-Parameter Subgroups of Reductive Groups)

Paul Sobaje
University of Southern California

October 25, 2014

Preliminaries:

- k - algebraically closed field.
- G - affine algebraic group over k.
- $\mathbb{G}_{a}-k$ as an algebraic group under addition.
- one-parameter subgroup of G is a homomorphism from \mathbb{G}_{a} to G.
- \mathfrak{g}-Lie algebra of G.
- \mathcal{N} - nilpotent variety of \mathfrak{g}.
- \mathcal{U} - unipotent variety of G.

Preliminaries:

- k - algebraically closed field.
- G - affine algebraic group over k.
- $\mathbb{G}_{a}-k$ as an algebraic group under addition.
- one-parameter subgroup of G is a homomorphism from \mathbb{G}_{a} to G.
- \mathfrak{g} - Lie algebra of G.
- \mathcal{N} - nilpotent variety of \mathfrak{g}.
- \mathcal{U} - unipotent variety of G.

In characteristic $p>0$

There is a p-mapping on $\mathfrak{g}, X \mapsto X^{[p]}$. We set $\mathcal{N}_{p} \subseteq \mathcal{N}$ to be $\left\{X: X^{[p]}=0\right\}$.

Similarly, let $\mathcal{U}_{p} \subseteq \mathcal{U}$ be $\left\{u: u^{p}=1\right\}$.

More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding $\rho: G \rightarrow G L_{n}$.
$X \in \mathfrak{g}$ is nilpotent if $d \rho(X)$ is a nilpotent matrix.
$u \in G$ is unipotent if $\rho(u)-I_{n}$ is a nilpotent matrix.

More On Nilpotent and Unipotent Elements

In any characteristic, fix a closed embedding $\rho: G \rightarrow G L_{n}$.
$X \in \mathfrak{g}$ is nilpotent if $d \rho(X)$ is a nilpotent matrix.
$u \in G$ is unipotent if $\rho(u)-I_{n}$ is a nilpotent matrix.
In char. $p>0, d \rho\left(X^{[p]}\right)=d \rho(X)^{p}$.

For $G L_{n}$, clear that \exists a $G L_{n}$-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$ given by

$$
X \mapsto I_{n}+X
$$

For $G L_{n}$, clear that \exists a $G L_{n}$-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$ given by

$$
X \mapsto I_{n}+X
$$

however, in characteristic $0 \ldots$

For $G L_{n}$, clear that \exists a $G L_{n}$-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$ given by

$$
X \mapsto I_{n}+X,
$$

however, in characteristic 0...

The Exponential Map is Better

$X \mapsto \exp (X)=I_{n}+X+X^{2} / 2+\cdots X^{n-1} /(n-1)!$ better respects group structure of $G L_{n}$:

- For all $c \in \mathbb{G}_{a}$, the map $c \mapsto \exp (c X)$ defines one-parameter subgroup of $G L_{n}$.
- If G closed subgroup, $X \in \mathfrak{g} \subseteq \mathfrak{g l}_{n}$, then $\exp (X) \in G$.
- If $X, Y \in \mathcal{N}$ in same Borel subalgebra, then $\log (\exp (X) \exp (Y))=$

$$
X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X,[X, Y]]+[Y,[Y, X]])+\cdots
$$

(Baker-Campbell-Hausdorff formula)

For $G L_{n}$, clear that \exists a $G L_{n}$-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$ given by

$$
X \mapsto I_{n}+X,
$$

however, in characteristic 0...

The Exponential Map is Better

$X \mapsto \exp (X)=I_{n}+X+X^{2} / 2+\cdots X^{n-1} /(n-1)!$ better respects group structure of $G L_{n}$:

- For all $c \in \mathbb{G}_{a}$, the map $c \mapsto \exp (c X)$ defines one-parameter subgroup of $G L_{n}$.
- If G closed subgroup, $X \in \mathfrak{g} \subseteq \mathfrak{g l}_{n}$, then $\exp (X) \in G$.
- If $X, Y \in \mathcal{N}$ in same Borel subalgebra, then $\log (\exp (X) \exp (Y))=$

$$
X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X,[X, Y]]+[Y,[Y, X]])+\cdots
$$

(Baker-Campbell-Hausdorff formula)
This formulation doesn't work in positive characteristic.

Let characteristic $k=p>0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Let characteristic $k=p>0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a Springer isomorphism. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:

Let characteristic $k=p>0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a Springer isomorphism. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between nilpotent and unipotent orbits.

Let characteristic $k=p>0$.

Springer (1969)

If G is semisimple, simply-connected, and char. is good for G, then there exists a G-equivariant isomorphism $\mathcal{N} \xrightarrow{\sim} \mathcal{U}$.

Such a map is called a Springer isomorphism. One application is that there is a bijection between nilpotent and unipotent G-orbits. In fact:

Serre (1999)

Every Springer isomorphism for G determines the same bijection between nilpotent and unipotent orbits.

Moral: for some applications, any two Springer isomorphisms are equally useful. For others, we'd like one which is "more similar" to the exponential map (i.e. respecting group properties).

More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if $P \leq G$ parabolic with $U=R_{u}(P)$ having nilpotence class less than p, then \exists a P-equivariant isomorphism

$$
\varepsilon_{P}: \operatorname{Lie}(U) \rightarrow U
$$

which essentially comes from base-changing exponential map in characteristic 0 . We require that σ restricts on U to ε_{P} for all such P.

More precisely, if σ is to fill the role of the exponential map in characteristic p, it should have the following properties:

Property 1: A Good Restriction to Certain Parabolic Subgroups

Serre proved that if $P \leq G$ parabolic with $U=R_{u}(P)$ having nilpotence class less than p, then \exists a P-equivariant isomorphism

$$
\varepsilon_{P}: \operatorname{Lie}(U) \rightarrow U
$$

which essentially comes from base-changing exponential map in characteristic 0 . We require that σ restricts on U to ε_{P} for all such P.

Carlson-Lin-Nakano (2008), McNinch (2005)

If $p \geq h$, the Coxeter number of G, then there is precisely one Springer isomorphism σ for G satisfying Property 1.

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_{a}$ has order p. However, when $p<h$ there are unipotent elements in G of order $p^{r}, r>1$ (for example, if $p=2$ then $S L_{3}$ has elements of order 4), so we can't expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_{a}.

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_{a}$ has order p. However, when $p<h$ there are unipotent elements in G of order $p^{r}, r>1$ (for example, if $p=2$ then $S L_{3}$ has elements of order 4), so we can't expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_{a}.

Let \mathcal{W}_{m} be the group of truncated Witt vectors. As a variety, $\mathcal{W}_{m} \cong \mathbb{A}^{m}$. It is an abelian unipotent group, and has elements of maximal order p^{m}.

Property 2: Obtaining Embeddings of Witt Groups:

In characteristic p, every $e \neq g \in \mathbb{G}_{a}$ has order p. However, when $p<h$ there are unipotent elements in G of order $p^{r}, r>1$ (for example, if $p=2$ then $S L_{3}$ has elements of order 4), so we can't expect every unipotent element to lie inside closed group isomorphic to \mathbb{G}_{a}.

Let \mathcal{W}_{m} be the group of truncated Witt vectors. As a variety, $\mathcal{W}_{m} \cong \mathbb{A}^{m}$. It is an abelian unipotent group, and has elements of maximal order p^{m}.

We require: If $X \neq 0$, and m is the least integer such that $X^{\left[p^{m}\right]}=0$, then σ defines an embedding $\mathbb{A}^{m} \rightarrow G$ given by

$$
\left(a_{0}, a_{1}, \ldots, a_{m-1}\right) \mapsto \sigma\left(a_{0} X\right) \sigma\left(a_{1} X^{[p]}\right) \cdots \sigma\left(a_{m-1} X^{\left[p^{m-1}\right]}\right)
$$

the image of which is a closed subgroup of G isomorphic to \mathcal{W}_{m}.

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma: \mathcal{N} \xrightarrow{\sim} \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\overline{\exp }: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}$.

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma: \mathcal{N} \xrightarrow{\sim} \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\overline{\exp }: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}$.

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in \mathcal{U}$. Question: what is minimal connected subgroup containing it? Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.

Theorem (S., 2014)

Let G be a semisimple simply-connected group, and suppose that p is good for G. Then \exists a Springer isomorphism $\sigma: \mathcal{N} \xrightarrow{\sim} \mathcal{U}$ satisfying Properties 1 and 2.

These properties do not uniquely specify an isomorphism, but every Springer isomorphism satisfying Property 1 restricts to the same isomorphism $\overline{\exp }: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}$.

Ingredient and Application: Abelian Unipotent Overgroups

Let $u \in \mathcal{U}$. Question: what is minimal connected subgroup containing it? Studied extensively by Testerman, Seitz, McNinch, and Proud, an application given by Serre.

Our proof relies in particular on result of Seitz: take X a regular nilpotent element, T the image of an associated cocharacter of X, and consider T decomposition of $C_{G}(X)^{0}$.

In characteristic 0 , the exponential isomorphism given explicitly by exponential series (once G embedded into $G L_{n}$).

In characteristic 0 , the exponential isomorphism given explicitly by exponential series (once G embedded into $G L_{n}$).

In characteristic p something (slightly weaker) but analogous is true -

In characteristic 0 , the exponential isomorphism given explicitly by exponential series (once G embedded into $G L_{n}$).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

$$
E_{p}(t)=\exp \left(t+\frac{t^{p}}{p}+\frac{t^{p^{2}}}{p^{2}}+\frac{t^{p^{3}}}{p^{3}}+\cdots\right)
$$

One can show that $E_{p}(t) \in \mathbb{Z}_{(p)} \llbracket t \rrbracket \subseteq \mathbb{Q} \llbracket t \rrbracket$.

In characteristic 0 , the exponential isomorphism given explicitly by exponential series (once G embedded into $G L_{n}$).

In characteristic p something (slightly weaker) but analogous is true -

Artin-Hasse Exponential

The Artin-Hasse exponential is the power series

$$
E_{p}(t)=\exp \left(t+\frac{t^{p}}{p}+\frac{t^{p^{2}}}{p^{2}}+\frac{t^{p^{3}}}{p^{3}}+\cdots\right)
$$

One can show that $E_{p}(t) \in \mathbb{Z}_{(p)} \llbracket t \rrbracket \subseteq \mathbb{Q} \llbracket t \rrbracket$.
If G is a classical matrix group $\left(G L_{n}, S O_{n}, S p_{n}\right)$, then one choice of σ is given by

$$
\sigma(X)=E_{p}(X)
$$

This does not work for arbitrary embeddings of G semisimple into $G L_{n}$.

Applications - the map

$$
\overline{\exp }: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}
$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in Jared Warner's talk.

Applications - the map

$$
\overline{\exp }: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}
$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in Jared Warner's talk.

Comparing Support Varieties over $G\left(\mathbb{F}_{p}\right)$ and \mathfrak{g}

Applications - the map

$$
\overline{\exp }: \mathcal{N}_{p} \xrightarrow{\sim} \mathcal{U}_{p}
$$

has been useful in support variety theory, and problems related to support varieties. One application will be seen tomorrow in Jared Warner's talk.

Comparing Support Varieties over $G\left(\mathbb{F}_{p}\right)$ and \mathfrak{g}

Carlson-Lin-Nakano used the existence of $\overline{\exp }(p \geq h)$ to compare the support varieties of a rational G-module M over $G\left(\mathbb{F}_{p}\right)$ and \mathfrak{g}.

Suslin-Friedlander-Bendel (1997)

Let \mathcal{G} be an infinitesimal group scheme over k of height $r, \mathrm{H}^{\bullet}(\mathcal{G}, k)$ its cohomology ring. Then the variety corresponding to $\mathrm{H}^{\bullet}(\mathcal{G}, k)$ is homeomorphic to the variety of group scheme homomorphisms from $\operatorname{Hom}_{\mathrm{gs} / k}\left(\mathbb{G}_{a(r)}, \mathcal{G}\right)$.

Suslin-Friedlander-Bendel (1997)

Let \mathcal{G} be an infinitesimal group scheme over k of height $r, \mathrm{H}^{\bullet}(\mathcal{G}, k)$ its cohomology ring. Then the variety corresponding to $\mathrm{H}^{\bullet}(\mathcal{G}, k)$ is homeomorphic to the variety of group scheme homomorphisms from $\operatorname{Hom}_{\mathrm{gs} / k}\left(\mathbb{G}_{a(r)}, \mathcal{G}\right)$.

Suslin-Friedlander-Bendel (1997), McNinch (2001), S. (2014)

If G is semisimple, simply-connected, and p good for G, then $\operatorname{Hom}_{\mathrm{gs} / k}\left(\mathbb{G}_{a(r)}, G_{(r)}\right)$ identifies canonically with commuting r-tuples of elements in \mathcal{N}_{p}.

Support varieties for rational G-modules

In recent work, Eric Friedlander has studied support varieties for rational G-modules, where G is a linear algebraic group, via the space

$$
\operatorname{Hom}_{\mathrm{gs} / k}\left(\mathbb{G}_{a}, G\right)
$$

The group G must be assumed to have a structure of exponential type. For G semisimple, simply-connected, and $p \geq h$ (probably p good), such a structure can be given by exp.

An interesting and (seemingly) related question:

An interesting and (seemingly) related question:

Exponentiating Representations

If G semisimple, when does a representation for \mathfrak{g} extend to one for G ?

