Categorifying the tensor product of a level 1 highest weight and perfect crystal

Monica Vazirani

UC Davis

AMS: Categorical Methods in Representation Theory

Joint with Henry Kvinge, UCD

Young's lattice of partitions

A crystal graph is directed

A crystal graph is directed, I-colored $\quad(I=\mathbb{Z})$

A crystal graph is directed, I-colored $\quad(I=\mathbb{Z}$, $\mathfrak{g}=\mathfrak{s l}_{\infty}$)

A crystal graph is directed, I-colored
 $(I=\mathbb{Z})$

with extra data, satisfying various axioms
This is $B\left(\Lambda_{0}\right)$, the crystal of the basic representation of $\mathfrak{g}=\mathfrak{s l} l_{\infty}$.
$\operatorname{Rep}\left(S_{n}\right)$
$n \geqslant 0$ simple S^{λ}
categorifies $\quad B\left(\Lambda_{0}\right)$
or $V\left(\Lambda_{0}\right)$, the basic representation of slam
node λ

$$
\operatorname{Hom}_{S_{n-1}}\left(s^{\mu}, \operatorname{Res}_{n-1}^{n} s^{\lambda}\right) \neq 0 \longleftrightarrow \text { edge } \underset{\substack{ \\\lambda}}{ }{\underset{\sim}{x}}^{\mu} i
$$

in i-block
corresponding to $Z\left(\mathbb{Q} S_{n-1}\right)$-action
more generally $K L R$ algebras

$$
\begin{array}{ll}
\operatorname{Rep}(R(\nu)) & \text { categorifies }
\end{array} \quad B(\infty) \text { for } U_{q}(o y) .
$$

simple \longleftrightarrow node .

$$
\operatorname{Hom}_{R\left(\nu-\alpha_{i}\right)}\left(S^{0}, \operatorname{Res} \sum_{\nu-\alpha_{i}}^{\nu} S^{0}\right) \neq 0
$$

type $A: I=\mathbb{Z} \quad\left(\mathfrak{s l}_{\infty}\right)$ or $I=\mathbb{Z} / p \mathbb{Z} \quad(\widehat{\mathfrak{s l}}(p))$ History
type A
affine Hecke algebra $H_{n} \quad \leftrightarrow \quad B(\infty)$ (Rept subsategon)
Cyclotomic Hecke algebra $H_{n}^{\Lambda} \leftrightarrow B(\Lambda)$
"level" 1:
$\operatorname{Rep} H_{n}^{\Lambda_{i}} \leftrightarrow\left\{\begin{array}{l}\operatorname{Rep} \mathbb{Q}_{n}, t \text { gencric } \\ \operatorname{Rep} \mathbb{F}_{p} S_{n}, t^{p}=1\end{array} \leftrightarrow \quad B\left(\Lambda_{i}\right)\right.$

$$
\begin{cases}u(\Delta l(x)), & t \text { gennix } \\ u(\hat{\Delta e}(p)), & t^{p}=1\end{cases}
$$

t^{2}

\otimes of crystals - categorify

Highest weight crystals - Webster 1001.2020
Losev-Webster 1303.1336

There are other crystals, e.g. perfect crystals
$B=$ perfect level $l, \lambda \in P^{+}$level l
$B \otimes B(\Lambda) \simeq B(\sigma(\Lambda))$ some $\sigma(\Lambda) \in P^{+}$level l
Categorify for $l=1$, types $A B C D$ (affine)

$B\left(n_{0}\right)$

Branching = soc Res

level 1 perfect crystal B

$B \otimes B\left(\Lambda_{i}\right) \simeq B\left(\Lambda_{i-1}\right)$

Combinatorial description of isomorphism

Combinatorial description of isomorphism

$$
B\left(\Lambda_{0}\right) \simeq B \otimes B\left(\Lambda_{1}\right)
$$

Given p-regular partition ν
and $i \bmod p$
ت! p-regular partition λ
with

$$
B(10) \cong B \omega B \Leftrightarrow B(A)
$$

Kyoto "Path" model; recover crystal rule

$B(10)$

$$
\begin{aligned}
& \text { Categorify } B(x) B\left(\Lambda_{1}\right) \simeq B\left(\Lambda_{0}\right) \\
& \text { Ind }\left[\begin{array}{l}
0 \\
i
\end{array}\right] \not D^{\nu} \rightarrow D^{\lambda} \\
& 0 \otimes \sqrt{3} \longleftrightarrow \sqrt{3}
\end{aligned}
$$

Thm
(1) [v] f exists in type $A_{p^{-1}}^{(1)}$
$\left[\right.$ kringe-v] ". type $B^{(1)}, C^{(1)}, D^{(1)}, A^{(2)}, D^{(2)}$
(2) [y] of commutes with the crystal operators pi in type A. [Kvinge-v] " " type $B^{(1)}, C^{(1)}, D^{(1)}, A^{(2)}, D^{(2)}$

In type A
is the 1-dim sign module.

In other types, replace sigh with modules as in $[V .0511221]$.

Conjecture Uniqueness

$$
p r_{\Lambda_{0}}^{*} \cos 0 c \operatorname{lnd}\left[\begin{array}{l}
\\
0
\end{array} D^{\nu}=D^{\lambda}\right.
$$

where pro $H_{n} \longrightarrow H_{n}^{\Lambda_{0}}$ is. $H_{n}^{\Lambda_{0}}=H_{n} / I$

Other directions

- level - conversations with Tingley suggest analogue of san modules is an obstacle beyond level 1.
- Other perfect crystals - cuspidals?

