
π-POINTS AND APPLICATIONS TO COHOMOLOGY AND

REPRESENTATION THEORY

LECTURE I

JULIA PEVTSOVA

Abstract. We discuss the cohomology ring of a finite group G with mod p

coefficients. We describe Quillen stratification, support varieties for modules,

and their properties. Then we move to the discussion of a more general class

of finite group schemes.

1. Cohomology and Support varieties

1.1. Rappels: generalities. Let G be a finite group, and k be a field of charac-
teristic p. We asume throughout that k is algebraically closed just for simplicity.
If p divides the order of G, then the representation theory of G is not semi-simple
(Maschke’s theorem does not hold). This is modular representation theory, and the
object of our study here.

Recall that to a finite group G, we associate the group algebra, kG. By defini-
tion, kG is generated by {g}g∈G as a k-vector space; multiplication is defined via
multiplication in G on the basis elements and extended linearly to kG. Recall that
kG has a Hopf algebra structure:

coproduct ∇ : g 7→ g ⊗ g,
antipode S : g 7→ g−1.

We have an equivalence of categories

Representations of G←→ kG−mod

1.2. Cohomology ring of G. The category kG−mod is an abelian category which
has enough projectives.

Remark 1.1. It also has enough injectives, and, moreover, it is a Frobenius cate-
gory:

injectives = projectives

This follows from the fact that kG is self-injective algebra which means that kG is
an injective module over itself.

On an abelian category with enough projectives we can do homological algebra.
Let M, N be G-modules, and let P• →M be a projective resolution of M . Then

Exti(M, N) = Hi(HomG(P•, N))

In particular,

Hi(G, k) = Exti(k, k)
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Moreover,

H∗(G, k) =

∞⊕

i=0

Hi(G, k)

is a graded commutative algebra.

Two products: Hi(G, k)×Hj(G, k)→ Hi+j(G, k)
I. Cup product is defined by tensoring projective resolutions and composing with a
diagonal approximation map.
II. Yoneda product is defined via splicing of long exact sequences. In more detail:
Exti(M, N) ' {equiv. classes of exact seq. N → P1 → P2 → . . .→ Pi →M}

Exti(M, N)× Extj(L, M)→ Exti+j(L, N)

N → · · · →M ◦ M → · · · → L
_

��

N → · · · → M = M → · · · → L
_

��
N → · · · → L.

These two products are nicely compatible which leads to graded commutativity
almost for free due to the following nice trick:

Eckmann-Hilton argument. Let X be a set with two binary operations, denoted
∗ and ◦, and a fixed element e such that

(1) e is the identity for both operations
(2) (a ◦ b) ∗ (c ◦ d) = (a ∗ c) ◦ (b ∗ d)

Then these two operations coincide and moreover they are associative and commu-
tative.

Some properties:

I. Kunneth formula. H∗(G×H, k) = H∗(G, k)⊗ H∗(H, k)
II. Finite generation:

Theorem 1.2 (Golod (1959), Venkov (1959), Evens (1961)). The cohomology ring
H•(G, k) of a finite group G is a finitely generated k-algebra.

Example 1.3. Let E = Z/p× · · · × Z/p
︸ ︷︷ ︸

n

, an elementary abelian p-group of rank n.

Then

H∗(E, k) ' k[x1, . . . , xn]⊗ Λ∗(y1, . . . , yn)

deg xi = 2, deg yi = 1.

Note that H∗(E, k) has lots of nilpotent elements.

H•(G, k) =

{
Hev(G, k), if p 6= 2
H∗(G, k), if p = 2

This algebra is (honestly) commutative.
Observations:

• H•(E, k)red = k[x1, . . . , xn];
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• Krull dimension of H•(E, k) is n.

Question. (Atiyah–Swan, Segal). What is the Krull dimension of H•(G, k)?

Answer. D. Quillen, “The spectrum of an equivariant cohomology ring, I, II”,
Annals of Math, 94, no.3, p. 71 (1971).

1.3. Quillen stratification theorem. Krull dimension of H•(G, k) = dimSpecm H•(G, k).
We replace the study of H•(G, k) with

Specm H•(G, k) = {maximal ideals in H•(G, k)} with Zariski topology.

Quillen showed that Spec H•(G, k) is “determined” by E ⊂ G, where E runs over
all elementary abelian p-subgroups of G. (The prime ideal spectrum Spec H∗(G, k)
can, and probably should, be considered here instead of Specm ).

Notation: |G| = Specm H•(G, k)

Remark 1.4.

|E| = Specm k[x1, . . . , xr] ' A
r

(x1 − λ1, . . . , xr − λr)
︸ ︷︷ ︸

max ideal

↔ (λ1, . . . λr)
︸ ︷︷ ︸

point on Ar

Naturality: E ⊂ G  H•(G, k)→ H•(E, k)  resG,E : |E| → |G|.

Theorem 1.5 (Quillen). (weak form)

• resG,E : |E| → |G| is a finite map
• |G| =

⋃

E⊂G

resG,E |E|

Theorem 1.6 (Quillen). (strong form)

|G| = colim
E⊂G

|E|

Corollary 1.7 (Atiyah-Swan conjecture). Krull dimH•(G, k) = max
E⊂G

rk E

Corollary 1.8. Irreducible components of |G| ↔ conjugacy classes of maximal
elementary abelian subgroups of G.

Remark 1.9. This approach tells us nothing about cohomology in any particular
degree. Later today you would learn about calculations in low degree cohomology.

1.4. Examples.

Example 1.10. Let p = 2. D4 = 〈σ, τ | σ4 = τ2 = 1, τστ = σ−1〉

Elementary abelian p-subgroups in D4:

〈τ, σ2τ 〉 = (Z/2)2 〈στ, σ3τ 〉 = (Z/2)2

〈σ2〉 = Z/2
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Specm H•(D8, k)

A
2

A
2

A
1
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|D4| ' A
2 ×A1 A

2

In this case we can compare the answer to the explicit calculation of H∗(D4, k)
which is known:

H∗(D4, k) = k[x1, x2, z]/(x1x2)

Example 1.11. GL3(Fp), p > 3. Exercise.

Some open questions.

(1) Number of irreducible components in |GLn(Fp)|
(2) Dimension of the minimal irreducible component in |GLn(Fp)| ?

1.5. Support varieties for modules.

Definition 1.12. Let IM = Ker{ H•(G, k) = Ext•G(k, k)
⊗M // Ext∗G(M, M) }.

The support variety of M , |G|M ⊂ |G|, is the subvariety of Specm H•(G, k) defined
by the ideal IM . (Equiv., |G|M ' Specm H•(G, k)/IM).

Can also be define in terms of Yoneda product: Ext∗G(k, k) acts on Ext∗G(M, M)
via Yoneda product:

Exti(k, k)× Extj(M, M)→ Exti+j(M, M)

[k→ · · · → k] × [M → · · · →M ]
_

(⊗M,id)

��
[M → · · · →M ] × [M → · · · →M ]

_

��

M → · · · → M = M → · · · →M
_

��
M → · · · →M.

“Support variety” = “where representation theory meets cohomology”.

Properties.

(1) (Avrunin-Scott) Quillen stratification for |G|M .
(2) (Alperin-Evens) cx M = dim |G|M

(cx M = min{s | dimPn ≤ cns−1} where P• → M runs over all proj. reso-
lutions of M).

(3) |G|M⊕N = |G|M ∪ |G|N
(4) |G|M⊗N = |G|M ∩ |G|N
(5) |G| = |G|k
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(6) 0→M1 →M2 →M3 → 0. Then |G|Mi
⊂ |G|Mj

∪ |G|M`

1.6. Finite group schemes. We now extend these cohomological constructions
to a more general class of finite group schemes - with sometimes strikingly different
results.

1.7. Definitions.

Definition 1.13. An affine (algebraic) scheme X is a representable functor

X : fin. gen. comm. k-algebras −→ sets

We denote by k[X] the coordinate algebra of X (the commutative k-algebra (of
finite type), representing X)

G is represented by k[X] ∼ X(R) = Homk−alg(k[X], R).

Definition 1.14. An (affine algebraic) group scheme G is a representable functor

G : fin. gen. comm. k-algebras −→ groups

We denote by k[G] the coordinate algebra of G (the commutative k-algebra (of
finite type), representing G)

Remark 1.15. k[G] is a commutative Hopf algebra.

Definition 1.16. G is a finite group scheme if k[G] is a finite k-algebra (finite
dimensional as a vector space over k).

Let G be a finite group scheme. Let

kG
def
= k[G]#,

a linear dual to k[G]. Then kG is a finite-dimensional CO-commutative Hopf k-
algebra, called the group algebra. Also known as: algebra of distributions.

We have equivalences of categories:

Finite group schemes over k oo ∼ // fin. dim. commutative Hopf k − algebras

Representations of G oo ∼ // k[G]− comod oo ∼ // kG−mod


