$\pi\text{-}\textsc{points}$ and applications to cohomology and representation theory lecture i

JULIA PEVTSOVA

ABSTRACT. We discuss the cohomology ring of a finite group G with mod p coefficients. We describe Quillen stratification, support varieties for modules, and their properties. Then we move to the discussion of a more general class of finite group schemes.

1. Cohomology and Support varieties

1.1. **Rappels: generalities.** Let G be a finite group, and k be a field of characteristic p. We asume throughout that k is algebraically closed just for simplicity. If p divides the order of G, then the representation theory of G is not semi-simple (Maschke's theorem does not hold). This is *modular representation theory*, and the object of our study here.

Recall that to a finite group G, we associate the group algebra, kG. By definition, kG is generated by $\{g\}_{g\in G}$ as a k-vector space; multiplication is defined via multiplication in G on the basis elements and extended linearly to kG. Recall that kG has a Hopf algebra structure:

coproduct
$$\nabla : g \mapsto g \otimes g$$
,
antipode $S : g \mapsto g^{-1}$.

We have an equivalence of categories

Representations of $G \longleftrightarrow kG - \text{mod}$

1.2. Cohomology ring of G. The category kG – mod is an abelian category which has enough projectives.

Remark 1.1. It also has enough injectives, and, moreover, it is a Frobenius category:

injectives = projectives

This follows from the fact that kG is self-injective algebra which means that kG is an injective module over itself.

On an abelian category with enough projectives we can do homological algebra. Let M, N be G-modules, and let $P_{\bullet} \to M$ be a projective resolution of M. Then

$$\operatorname{Ext}^{i}(M, N) = \operatorname{H}^{i}(\operatorname{Hom}_{G}(P_{\bullet}, N))$$

In particular,

$$\mathrm{H}^{i}(G,k) = \mathrm{Ext}^{i}(k,k)$$

Date: May 2010.

Moreover,

$$\mathrm{H}^*(G,k) = \bigoplus_{i=0}^{\infty} \mathrm{H}^i(G,k)$$

is a graded commutative algebra.

Two products: $\operatorname{H}^i(G,k) \times \operatorname{H}^j(G,k) \to \operatorname{H}^{i+j}(G,k)$

I. *Cup product* is defined by tensoring projective resolutions and composing with a diagonal approximation map.

II. Yoneda product is defined via splicing of long exact sequences. In more detail: Extⁱ(M, N) \simeq {equiv. classes of exact seq. $N \rightarrow P_1 \rightarrow P_2 \rightarrow \ldots \rightarrow P_i \rightarrow M$ }

$$\operatorname{Ext}^{i}(M, N) \times \operatorname{Ext}^{j}(L, M) \to \operatorname{Ext}^{i+j}(L, N)$$

$$N \to \dots \to M \circ M \to \dots \to L$$

$$\downarrow$$

$$N \to \dots \to M = M \to \dots \to L$$

$$\downarrow$$

$$N \to \dots \to L.$$

These two products are nicely *compatible* which leads to graded commutativity almost for free due to the following nice trick:

Eckmann-Hilton argument. Let X be a set with two binary operations, denoted * and \circ , and a fixed element e such that

(1) e is the identity for both operations

(2) $(a \circ b) * (c \circ d) = (a * c) \circ (b * d)$

Then these two operations coincide and moreover they are associative and commutative.

Some properties:

I. Kunneth formula. $H^*(G \times H, k) = H^*(G, k) \otimes H^*(H, k)$ II. Finite generation:

Theorem 1.2 (Golod (1959), Venkov (1959), Evens (1961)). The cohomology ring $H^{\bullet}(G, k)$ of a finite group G is a finitely generated k-algebra.

Example 1.3. Let $E = \underbrace{\mathbb{Z}/p \times \cdots \times \mathbb{Z}/p}_{n}$, an elementary abelian p-group of rank n.

Then

$$\mathrm{H}^*(E,k)\simeq k[x_1,\ldots,x_n]\otimes\Lambda^*(y_1,\ldots,y_n)$$

 $\deg x_i = 2, \ \deg y_i = 1.$

Note that $H^*(E, k)$ has lots of nilpotent elements.

$$\mathbf{H}^{\bullet}(G,k) = \begin{cases} \mathbf{H}^{\mathrm{ev}}(G,k), & \text{if } p \neq 2\\ \mathbf{H}^{*}(G,k), & \text{if } p = 2 \end{cases}$$

This algebra is (honestly) commutative. Observations:

• $\operatorname{H}^{\bullet}(E,k)_{\operatorname{red}} = k[x_1,\ldots,x_n];$

 $\mathbf{2}$

• Krull dimension of $H^{\bullet}(E, k)$ is n.

Question. (Atiyah–Swan, Segal). What is the Krull dimension of $H^{\bullet}(G, k)$?

Answer. D. Quillen, "The spectrum of an equivariant cohomology ring, I, II", Annals of Math, 94, no.3, p. 71 (1971).

1.3. Quillen stratification theorem. Krull dimension of $H^{\bullet}(G, k) = \dim \text{Specm } H^{\bullet}(G, k)$. We replace the study of $H^{\bullet}(G, k)$ with

Specm $H^{\bullet}(G, k) = \{$ maximal ideals in $H^{\bullet}(G, k) \}$ with Zariski topology.

Quillen showed that Spec $H^{\bullet}(G, k)$ is "determined" by $E \subset G$, where E runs over all elementary abelian *p*-subgroups of G. (The prime ideal spectrum Spec $H^*(G, k)$ can, and probably should, be considered here instead of Specm).

Notation: $|G| = \text{Specm H}^{\bullet}(G, k)$

Remark 1.4.

$$|E| = \operatorname{Specm} k[x_1, \dots, x_r] \simeq \mathbb{A}^r$$

$$\underbrace{(x_1 - \lambda_1, \dots, x_r - \lambda_r)}_{\text{max ideal}} \leftrightarrow \underbrace{(\lambda_1, \dots, \lambda_r)}_{\text{point on } \mathbb{A}^r}$$

<u>Naturality</u>: $E \subset G \quad \rightsquigarrow \quad \operatorname{H}^{\bullet}(G, k) \to \operatorname{H}^{\bullet}(E, k) \quad \rightsquigarrow \quad \operatorname{res}_{G,E} : |E| \to |G|.$

Theorem 1.5 (Quillen). (weak form)

• $\operatorname{res}_{G,E} : |E| \to |G|$ is a finite map • $|G| = \bigcup_{E \subset G} \operatorname{res}_{G,E} |E|$

Theorem 1.6 (Quillen). (strong form)

$$|G| = \operatorname{colim}_{E \subset G} |E|$$

Corollary 1.7 (Atiyah-Swan conjecture). Krull dim $H^{\bullet}(G, k) = \max_{E \subset G} rk E$

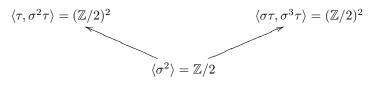
Corollary 1.8. Irreducible components of $|G| \leftrightarrow$ conjugacy classes of maximal elementary abelian subgroups of G.

Remark 1.9. This approach tells us nothing about cohomology in any particular degree. Later today you would learn about calculations in low degree cohomology.

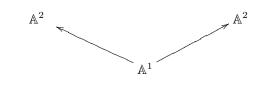
1.4. Examples.

Example 1.10. Let p = 2. $D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$

Elementary abelian p-subgroups in D_4 :



Specm $\operatorname{H}^{\bullet}(D_8, k)$



 $|D_4| \simeq \mathbb{A}^2 \times_{\mathbb{A}^1} \mathbb{A}^2$

In this case we can compare the answer to the explicit calculation of $H^*(D_4, k)$ which is known:

$$\mathbf{H}^*(D_4, k) = k[x_1, x_2, z]/(x_1 x_2)$$

Example 1.11. $\operatorname{GL}_3(\mathbb{F}_p), p > 3$. Exercise.

Some open questions.

- (1) Number of irreducible components in $|\operatorname{GL}_n(\mathbb{F}_p)|$
- (2) Dimension of the *minimal* irreducible component in $|\operatorname{GL}_n(\mathbb{F}_p)|$?

1.5. Support varieties for modules.

Definition 1.12. Let $I_M = \text{Ker}\{ H^{\bullet}(G, k) = \text{Ext}_G^{\bullet}(k, k) \xrightarrow{\otimes M} \text{Ext}_G^*(M, M) \}$. The support variety of $M, |G|_M \subset |G|$, is the subvariety of Specm $H^{\bullet}(G, k)$ defined by the ideal I_M . (Equiv., $|G|_M \simeq \text{Specm } H^{\bullet}(G, k)/I_M$).

Can also be define in terms of Yoneda product: $\mathrm{Ext}^*_G(k,k)$ acts on $\mathrm{Ext}^*_G(M,M)$ via Yoneda product:

$$\operatorname{Ext}^{i}(k,k) \times \operatorname{Ext}^{j}(M,M) \to \operatorname{Ext}^{i+j}(M,M)$$

$$\begin{bmatrix} k \to \cdots \to k \end{bmatrix} \times \begin{bmatrix} M \to \cdots \to M \end{bmatrix}$$

$$\begin{bmatrix} (\otimes M, \operatorname{id}) \\ & (\otimes M, \operatorname{id}) \\ & \downarrow \\ & M \to \cdots \to M \end{bmatrix} \times \begin{bmatrix} M \to \cdots \to M \end{bmatrix}$$

$$\begin{bmatrix} M \to \cdots \to M \end{bmatrix}$$

$$\begin{bmatrix} M \to \cdots \to M \\ & \downarrow \\ & M \to \cdots \to M. \end{bmatrix}$$

"Support variety" = "where representation theory meets cohomology".

Properties.

- (1) (Avrunin-Scott) Quillen stratification for $|G|_M$.
- (2) (Alperin-Evens) $\operatorname{cx} M = \dim |G|_M$ $(\operatorname{cx} M = \min\{s \mid \dim P_n \leq cn^{s-1}\}$ where $P_{\bullet} \to M$ runs over all proj. resolutions of M).
- (3) $|G|_{M\oplus N} = |G|_M \cup |G|_N$
- $(4) |G|_{M\otimes N} = |G|_M \cap |G|_N$
- (5) $|G| = |G|_k$

4

(6) $0 \to M_1 \to M_2 \to M_3 \to 0$. Then $|G|_{M_i} \subset |G|_{M_i} \cup |G|_{M_\ell}$

1.6. Finite group schemes. We now extend these cohomological constructions to a more general class of finite group schemes - with sometimes strikingly different results.

1.7. Definitions.

Definition 1.13. An affine (algebraic) scheme X is a representable functor

X: fin. gen. comm. k-algebras \longrightarrow sets

We denote by k[X] the coordinate algebra of X (the commutative k-algebra (of finite type), representing X)

G is represented by $k[X] \sim X(R) = \operatorname{Hom}_{k-alg}(k[X], R).$

Definition 1.14. An (affine algebraic) group scheme G is a representable functor G: fin. gen. comm. k-algebras \longrightarrow groups

We denote by k[G] the coordinate algebra of G (the commutative k-algebra (of finite type), representing G)

Remark 1.15. k[G] is a commutative Hopf algebra.

Definition 1.16. G is a finite group scheme if k[G] is a finite k-algebra (finite dimensional as a vector space over k).

Let G be a finite group scheme. Let

$$kG \stackrel{def}{=} k[G]^{\#},$$

a linear dual to k[G]. Then kG is a finite-dimensional CO-commutative Hopf k-algebra, called the **group algebra**. Also known as: algebra of distributions.

We have equivalences of categories:

Finite group schemes over $k \xleftarrow{\sim} fin.$ dim. commutative Hopf k – algebras

Representations of $G \xleftarrow{\sim} k[G] - \text{comod} \xleftarrow{\sim} kG - \text{mod}$