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Abstract. Applications: Modules of constant Jordan type and non-maximal

rank varieties.

To finish up what’s left from lecture 2.

Definition 2.1. Let α, β be two π-points of G.
α ∼ β ⇐⇒ for any finite-dimensional G–module M , α∗M is free if and only if β∗M
is free.

Remark 2.2. What is behind the equivalence relation? Let’s bisect it in the
case of elementary abelian p-group. Let kE = k[x1, . . . , xn]/(xp

i ). Cyclic shifted
subgroups and Rank varieties were defined in terms of these generators xi. What
if we change generators? Let kE = k[x′

1, . . . , x
′
n]/((x′

i)
p). We need to compare

restrictions of a module M to 〈xa+1〉 and 〈x′
a+1〉 where xa = a1x1+. . .+anxn+1,

x′
a = a1x

′
1 + . . . + anx′

n + 1.

Exercise. xa − x′
a ∈ I2 = (x1, . . . , xn)2.

The equivalence relation in this case says the following:

M ↓〈xa+1〉 is projective if and only if M ↓〈cxa+p(x1,...,xn)+1〉 is projective

where p(x1, . . . , xn) is any polynomial without constant or linear term, and c ∈ k∗.

Definition 2.3. Support space of a finite group scheme G:

Π(G) =< π-points > / ∼

Support space of a G-module M :

Π(G)M =< [α] : k[t]/tp → kG : α∗M is not free >

Topology: closed sets are Π(G)M for finite dimensional G-modules M .

This specializes to

• Proj VE and Proj VE(M) for G = E, an elementary abelian p-group.
• ProjN [p] and Vg(M) for a restricted Lie algebra g

• SFB theory of varieties of one-parameter subgroups for Frobenius kernels

main Theorem 2.4 (Friedlander-P.).

Π(G) ' Proj |G|

Π(G)M
︸ ︷︷ ︸

local prop

' Proj |G|M
︸ ︷︷ ︸

cohomology
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for any finite dimensional G-module M

Π(G) has an intrinsic topology and a scheme structure. It’s isomorphic to
Proj |G| with respect to both of these structures.

Theorem 2.5 (Detection of projectivity ∼ Dade’s lemma). M is projective ⇔
Π(G)M = ∅ ⇔ M is free when restricted to any subalgebra k[t]/tp → kG.

Credit: Dade, Chouinard, Benson-Carlson-Rickard, [finite groups], Bendel, Pevtsova
[infinitesimal group schemes], Friedlander-Pevtsova [finite group schemes]. Will not
touch upon this here but the theorem is valid for all modules, not necessarily fi-
nite dimensional. This makes it more difficult because the finite dimensional case
follows from Theorem 2.4 easily.

Lots of open questions. Finite generation of cohomology for other Hopf algebras
and more general finite dimensional algebras; rank varieties and “local” projectivity
tests, tensor product property for quantum groups. Calculations of support varieties
(beyond Weyl and irreducible modules - see B. Parshall’s talk).

3. Modules of constant Jordan type

Time to talk about applications. One can few Theorem 2.4 as an application
although it is probably more the fundamentals of the theory. I was choosing between
at least four possible topics:

(1) Classification of tensor triangulated subcategories in stmod G.
(2) Non-maximal rank varieties ( = sets of π-points α where rk{α(t), M} is not

maximal. This explains the name “rank variety”).
(3) Modules of constant Jordan type
(4) Vector bundles on projective varieties arising from modular representation

theory

And the winner is ...

3.1. Modules of CJT. We converged to cohomology but now we are going away
again. Recall:

The isomorphism class of a Z/p-module M ↔ M '
p⊕

i=1
ai[i] ↔ JType(t, M), the

Jordan type of t as an operator of M .

For a π-point α:

α : k[t]/tp → kG α∗(M) ' a1[1] + . . . + ap[p] ' JType(α(t), M).

Revisit projectivity test: M is projective if and only if α∗(M) = ap[p]. In particular,
the Jordan type is always the same; it is also maximal with respect to the dominance
ordering on partitions of dimM .

Definition 3.1. Let G be a finite group scheme, and M be a finite dimensional
G-module. Then M is a module of constant Jordan type if α∗(M) has the same
Jordan type (same isomorphism class) for any π-point α of G.

Questions: do we have to check at ALL π-points? No.

Theorem 3.2 (Carlson-Friedlander-P.-Suslin). The property of being of Constant

Jordan type does not depend on the choice of a representative of a π-point.
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elem Example 3.3. Why do we have to worry about that? The “local” Jordan type
can easily change when we change representative of a π-point.

Let E = Z/p × Z/p, p > 2, kE = k[x, y]/(xp, yp). Let M = k[x, y]/(x2 − y, xp)
be an E-module. Define π-points α, β : k[t]/tp → kE by

α(t) = x2 − y, and β(t) = y.

Then α ∼ β because they have proportional “linear” parts. But:

α∗M ' p[1], β∗M '

[
p + 1

2

]

⊕

[
p − 1

2

]

.

Note that this is not the “generic” type. The local Jordan type at most points (of
the form ax + by, a 6= 0) is projective and does not depend on a representative.

Example 3.4.

• Projective modules; JType = a[p]
• The trivial module k; JType = [1]
• Endotrivial modules (Endk(M) ' k + proj)

Theorem 3.5 (Carlson-Friedlander-P (local endotriviality test)). M is endo-trivial

if and only if M has constant Jordan type [1] + a[p] or [p − 1] + a[p].

Proposition 3.6. The property of being of constant Jordan type is preserved under

• Direct sums

• Heller operator

• Direct summands

• Tensor products

• Duals

• This is an invariant of a component of a stable Auslander-Reiten quiver of

kG

Remark 3.7. The tensor product property is subtle because

α∗(M ⊗ N) 6' α∗(M) ⊗ α∗(N)

as Z/p-modules.

Some fun examples. Let E = Z/p × Z/p, kE = k[x, y]/(xp, yp).

I. M - an E-module of dimension 2n + 1 ( “zigzag module”).
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Constant Jordan type 2n + 1.
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II.
(3.7.1)
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For p = 5, this module has constant Jordan type 3[3] + 2[2]. If p > 5, then it
does not have constant Jordan type. Namely, the Jordan type for both x and y is
3[3] + 2[2], whereas the Jordan type of x + y is 4[3] + 1[1].

More generally, the module above for p = 5 is a special case of M = Ip−2/Ip+1 ,
where I is the augmentation ideal of kE. It is of constant Jordan type (p−2)[3]+2[2].

Exercise. Classify modules of constant Jordan type for SL2(1). Find all types that
occur.

General question: Which Jordan types can occur as types of modules of Constant
Jordan type.

Theorem 3.8. Assume dimΠ(G) ≥ 1. Then for any n there exists an indecom-

posable G-module of constant Jordan type n[1] + [proj].

Theorem 3.9 (Benson, 2008). Assume dimΠ(G) ≥ 1 for a finite group G, and

assume p ≥ 5. There does not exist a module of constant Jordan type [a] + m[p]
where 1 < a < p − 1.

Question: Which types are realizable?

3.2. Non-maximal rank varieties. Why “rank” variety? Here is an alternative
description:
Π(G)M = {[α] | JType(α(t), M) = m[p]} = {[α] | rk{α(t), M} = dimM − dim M

p
}

Hence, Π(G)M consists of all π-points α such that the rank of α(t) is the maximal
possible.

max Proposition 3.10. Let M be a finite-dimensional G-module, and let α : k[t]/tp →
kG br a π-point such that rk{α(t), M} is maximal among all π-points of G. Then

for any π-point β, we have rk{β(t), M} = rk{α(t), M}.

The “maximal rank” is well-defined on equivalence classes of π-points.
We revisit here Example 3.3.

Definition 3.11. The non-maximal rank variety Γ(G)M ⊂ Π(G) of M is defined
as

Γ(G)M = {[α] | rk{α(t), M} is not maximal }

Remark 3.12. It is indeed a projective variety - a closed subset in Π(G).

In fact, we get a whole string of new invariants of a module M , invariants which
are finer than Π(G)M :
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Definition 3.13. The non-maximal ith rank variety Γi(G)M ⊂ Π(G) of M is
defined as

Γi(G)M = {[α] | rk{α(ti), M} is not maximal }

for 1 ≤ i ≤ p − 1

Remarks:
1. Γi(G)M is ALWAYS a proper subvariety.
2. If Π(G)M is a proper subvariety of Π(G) then Γi(G)M = Π(G)M for all i. So this
is interesting precisely for modules for which support varieties give no information.
3. M is of constant Jordan type if and only if Γ1(G)M = . . . = Γp−1(G)M = ∅.

Definition 3.14. M is a module of constant rank if rk{α(t), M} is independent of
a π-point α. Equivalently, Γ1(G)M = ∅.

And now we cycle our path back in to cohomology.

Definition 3.15. For M a module of constant rank, and ζ ∈ H1(G, M), we define

oneone (3.15.1) Z(ζ) ≡ {[αK] | α∗
K(ζ) = 0} ⊂ Π(G).

Suppose ζ ∈ H1(G, M) = Ext1G(k, M) is represented by an extension 0 → M →
Eζ → k → 0.

Proposition 3.16. Then

Z(ζ) =

{

Π(G), if ζ splits at every π-point

Γ1(G)Eζ
, otherwise.

In particular, Z(ζ) ⊂ Π(G) is closed.

If M = Ω1−2nk, and ζ ∈ H1(G, M) = H2n(G, k), then Eζ = Ω2nLζ , and

Γ1(G)Eζ
= Γ1(G)Lζ

= 〈ζ〉.


