ADDITIONAL PROBLEMS

LECTURE 4

Definition. A matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is called *orthogonal* if the following conditions are satisfied: $a^2 + c^2 = b^2 + d^2 = 1$, and ab + cd = 0.

Definition. The *transpose* of a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the matrix $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$

Exercise 1. Let A be an orthogonal matrix.

- (a) Show that $\det A = \pm 1$
- (b) Show that A^T is also orthogonal

Exercise 2. Prove that orthogonal matrices form a subgroup of $GL_2(\mathbb{R})$.

Exercise 3. Show that the function $A \mapsto \det A$ determines a *group homomorphism* from $GL_2(\mathbb{R})$ to \mathbb{R}^{\times} , where \mathbb{R}^{\times} are all non-zero real numbers considered as a group with respect to multiplication.

Date: July 13.

1