ADDITIONAL PROBLEMS

LECTURE 4

Definition. A matrix $A=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$ is called orthogonal if the following conditions are satisfied: $a^{2}+c^{2}=b^{2}+d^{2}=1$, and $a b+c d=0$.
Definition. The transpose of a matrix $A=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$ is the matrix $A^{T}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{c} \\ \mathrm{b} & \mathrm{d}\end{array}\right]$
Exercise 1. Let A be an orthogonal matrix.
(a) Show that $\operatorname{det} A= \pm 1$
(b) Show that A^{T} is also orthogonal

Exercise 2. Prove that orthogonal matrices form a subgroup of $G L_{2}(\mathbb{R})$.
Exercise 3. Show that the function $A \mapsto \operatorname{det} A$ determines a group homomorphism from $G L_{2}(\mathbb{R})$ to \mathbb{R}^{\times}, where \mathbb{R}^{\times}are all non-zero real numbers considered as a group with respect to multiplication.

[^0]
[^0]: Date: July 13.

