POINT GROUPS

LECTURE 8, EXERCISE SET 1

Recall that we denote by M the group of all rigid motions of the plane. An (orthogonal) subgroup $\mathbb{O}<M$ is the subgroup of all motions which fix the origin. A subgroup $T<M$ is the subgroup of all translations of the plane.

Definition. A subgroup of M is called discrete if it does not contain arbitrarily small rotations or translations.

Exercise 1. Show that a discrete subgroup of M consisting of rotations around the origin is cyclic and is generated by some rotation ρ_{θ}.
Exercise 2. Show that a discrete subgroup of \mathbb{O} is a finite group.
Definition. Let G be a discrete group of rigid motions of the plane. The translation subgroup of G is the subgroup generated by all translations $t_{\vec{a}}$ in G.
Example. Let G be a group of symmetries of an infinite checkboard table (with the basis square 1×1). The translation subgroup of G is the lattice on the basis vectors $(1,0)$ and $(0,1)$.
There are three possibilities: L is trivial (then G is a finite group of rigid motions), L is generated by just one translation (this leads to frieze patterns), and L is generated by two indepenent translations.
Definition. A discrete group of rigid motions of the plane is called a 2-dimensional crystallographic group if the subgroup L of G is a lattice, i.e., L is generated by two linearly independent vectors \vec{a}, \vec{b}.
There is one-to-one correspondence:

$$
\text { Wallpaper patterns } \longleftarrow \longrightarrow \text { Crystallographic groups }
$$

In the next exercise we prove the theorem known as crystallographic restriction.
Exercise 3. Let $H<\mathbb{O}$ be a finite subgroup of the group of symmetries of a lattice L. Then
(a) Every rotation in H has order $1,2,3,4$, or 6 .
(b) H is one of the groups C_{n} or D_{n} for $n=1,2,3,4$, or 6 .

Recall that the point group \bar{G} of a crystallographic group G carries the lattice L of G to itself. The point group \bar{G} is also a finite subgroup of \mathbb{O} by Exercise 2. Hence, the last exercise can be reformulated as follows:
Corollary 4. Let G be a 2-dimensional crystallographic group; that is, G is a group of symmetries of a wallpaper pattern. Then the choice for the point group of G (the group which "encodes" all rotations, reflections and glide reflections) is very limited: it is one of the nine (only!!) groups from the list in the Exercise $3 b$.

[^0]Hints for Exercise 3a.
(1) Since the group H is finite, some multiple of any angle which defines a rotation in the group H must be 2π.
(2) Choose the shortest vector in L and the smallest angle θ such that the rotation $\rho_{\theta} \in H$. Now, if the rotation does not have the specified order, try to construct a vector shorter than the one you chose. How? Well, don't forget that applying rotations from H to a vector from the lattice gives you new vectors from the latttice (since H carries L to itself).

[^0]: Date: July 20.

