DIHEDRAL GROUPS

LECTURE 2, EXERCISE SET 2: CONTINUE FROM LECTURE 1

Definition 1. The dihedral group $D_{n}(n \geq 3)$ is the group of symmetries of a regular n-sided polygon.

Exercise 2. Finish the exercise about D_{3} :
(1) List all symmetries of an equilateral triangle, giving them "letter" names. Count the number of symmetries. Classify which symmetries are orientationpreserving, and which are orientation-reversing.
(2) Compute the multiplication table for the group D_{3}.

Look at your multiplication table and convince yourself that D_{3} is a NONABELIAN group. This is the smallest non-abelian group, which also goes by the name S_{3}.

Definition 3. A group is called finite if it has a finite number of elements. The order of a finite group is the number of elements in the group.
Definition 4. (Informal) We say that a group is generated by two elements x, y if any element of the group can be written as a product of x 's and y 's.

More generally, a subset of elements $\left\{x_{1}, x_{2}, \ldots\right\}$ of G is a set of generators of a group G if any element of G can be written as a product of elements x_{i} from the subset.

Exercise 5. Show that D_{3} is generated by 2 elements: ρ, the rotation by $2 \pi / 3$ and r, the reflection through the median.

Exercise 6. We shall now investigate the group D_{4}, the group of symmetries of a square
(1) Find the order of the group D_{4}.
(2) Find two symmetries of a square such that all other symmetries can be obtained by consecutive compositions of these two. Write down every symmetry as a composition of the two you have chosen. Once you are done, you've established that D_{4} is generated by 2 elements! The two chosen symmetries are the generators of D_{4}.

[^0]
[^0]: Date: July 10.

