CENTER OF GRAVITY

LECTURE 5, EXERCISE SET 1

Recall that the group M os all rigid motions is generated by the following three "families" of elements:
(1) Translations $t_{\vec{a}}\left(t_{\vec{a}} \vec{v}=\vec{v}+\vec{a}\right)$
(2) Rotations around the origin counterclockwise ρ_{ϕ}.

Rotation preserves the origin. and can be described by a rotation matrix $\rho_{\phi}=\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$
(3) And just ONE reflection r - reflection through (around, over, under or with or without respect to) the x-axis. The reflection r also fixes the origin and correspond to the matrix $r=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
Any orientation-reversing rigid motion of the plane can be obtained by subsequent compositions of a reflection r followed by a rotation followed by a translation; for orientation-preserving motion skip the reflection.
Definition. Let s_{1}, \ldots, s_{n} be n points on the plane. The center of gravity is the point whose coordinates are the ariphmetic means of the coordinates of s_{i} :

$$
p=\frac{s_{1}+\ldots+s_{n}}{n}
$$

Exercise. Show that rigid motions preserve centers of gravity.
Hint: Since the group of all rigid motions is generated by translations, rotations and a reflection, it suffices to do the exercise for those three. So, here is a reformulation:
Exercise 1. Show that the following rigid motions preserve centers of gravity:
(1) Rotation ρ_{ϕ},
(2) Translation $t_{\vec{a}}$,
(3) Reflection through the x-axis r.

Recall that we denote by M the group of all rigid motions of the plane. An (orthogonal) subgroup $\mathbb{O}<M$ is the subgroup of all motions which fix the origin. A subgroup $T<M$ is the subgroup of all translations of the plane.

Definition. A subgroup of M is called discrete if it does not contain arbitrarily small rotations or translations.

Exercise 2. Show that a discrete subgroup of M consisting of rotations around the origin is cyclic and is generated by some rotation ρ_{θ}.

Exercise 3. Show that a discrete subgroup of \mathbb{O} is a finite group.

[^0]
[^0]: Date: July 16.

