DIHEDRAL GROUP D_{n}

LECTURE 2, EXERCISE SET 2

PROBLEM SET III

Definition. The dihedral group $D_{n}(n \geq 3)$ is the group of symmetries of a regular n-sided polygon.

Let $\rho=\rho_{\frac{2 \pi}{n}}$ be the rotation counter-clockwise by $\frac{2 \pi}{n}$ around the center of the polygon. Let r be a reflection of the polygon (for convenience, let's arrange the coordinate axes so that the center of the polygon is at the origin, and r is the reflection through the x-axis.)
Exercise 1. Prove that any other reflection in D_{n} has the form Rot or $=\rho^{i} \circ r$ for some integer i.
Exercise 2. Let $n=4$, so that D_{4} is the group of symmetries of a square. Simplify: $(\rho \circ r) \circ \rho^{2}$.
Exercise 3. For any D_{n}, prove that the following relation holds: $r \rho=\rho^{n-1} r=$ $\rho^{-1} r$.

Exercise 4. (Just for fun...) Simplify: $\rho^{2} \circ r \circ \rho^{-1} \circ r^{-1} \circ \rho^{3} \circ r^{3}$.

[^0]
[^0]: Date: July 30, 2013.

