CENTER OF GRAVITY AND THE FIXED POINT THEOREM

```
SYMMETRY AND ESCHER, PROBLEM SET 6 (LECTURE IV)
```

Recall that the group \mathbb{M} of all rigid motions of the plane is generated by the following three "families" of elements:
(1) Rotation $\rho_{\theta} \mathrm{CC}$ around the origin, $0 \leq \theta<2 \pi$

Rotation preserves the origin.
Rotation ρ_{θ} is given by multiplication by the "rotation" matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
(2) Reflection r through the x-axis

The reflection r also fixes the origin and corresponds to the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(3) Translation $t_{\vec{v}}$ by a vector $\vec{v}=(a, b)$ for $a, b \in \mathbb{R}$.

Definition. Let s_{1}, \ldots, s_{n} be n points on the plane. The center of gravity is the point whose coordinates are the arithmetic means of the coordinates of s_{i} :

$$
p=\frac{s_{1}+\ldots+s_{n}}{n}
$$

Problem 1. Prove that rigid motions preserve centers of gravity.
Hint: It suffices to prove this for ρ_{θ}, r and $t_{\vec{v}}$.
Problem 2. Now prove the "Fixed Point theorem".
Theorem 3. Let G be a finite group of rigid motions of the plane. Prove that G has a fixed point (that is, there is a point P on the plane which is fixed by all elements of G).

[^0]
[^0]: Date: July 29, 2011.

