CENTER OF GRAVITY AND THE FIXED POINT THEOREM

SYMMETRY AND ESCHER, PROBLEM SET 6 (LECTURE IV)

Recall that the group \mathbb{M} of all rigid motions of the plane is generated by the following three "families" of elements:

(1) Rotation ρ_{θ} CC around the origin, $0 \le \theta < 2\pi$ Rotation preserves the origin.

Rotation preserves the origin. Rotation ρ_{θ} is given by multiplication by the "rotation" matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

(2) Reflection r through the x-axis

The reflection r also fixes the origin and corresponds to the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

(3) Translation $t_{\vec{v}}$ by a vector $\vec{v} = (a, b)$ for $a, b \in \mathbb{R}$.

Definition. Let s_1, \ldots, s_n be *n* points on the plane. The *center of gravity* is the point whose coordinates are the arithmetic means of the coordinates of s_i :

$$p = \frac{s_1 + \ldots + s_n}{n}$$

Problem 1. Prove that rigid motions preserve centers of gravity.

Hint: It suffices to prove this for ρ_{θ} , r and $t_{\vec{v}}$.

Problem 2. Now prove the "Fixed Point theorem".

Theorem 3. Let G be a finite group of rigid motions of the plane. Prove that G has a fixed point (that is, there is a point P on the plane which is fixed by all elements of G).