CRYSTALLOGRAPHIC RESTRICTION

SYMMETRY AND ESCHER, PROBLEM SET 8 (LECTURE 6)

We now prove the theorem known as crystallographic restriction.
Problem 1. Let $H<\mathbb{O}$ be a finite subgroup of the group of symmetries of a lattice L. Then
(a) Every rotation in H has order $1,2,3,4$, or 6 .
(b) H is one of the groups C_{n} or D_{n} for $n=1,2,3,4$, or 6 .

If G is a crystallographic group, and L is the lattice of G, then $\bar{G}=G / L$ is the point group. The group \bar{G} consists only of rotations and reflections, and is a finite subgroup of \mathbb{O}. It also carries the lattice L to itself. Hence, we have the following important corollary:

Corollary 2. Let G be a 2-dimensional crystallographic group; that is, G is a group of symmetries of a wallpaper pattern. Then the choice for the point group of G (the group which "encodes" all rotations, reflections and glide reflections) is very limited: it is one of the eight (only!!) groups from the list in the last problem.

[^0]
[^0]: Date: August 4.

