FROM SYMMETRY TO GROUPS, HOMEWORK 1

Problem 1. (1) Show that the identity element in a group G is unique. That is, if e, e^{\prime} are two elements both satisfying the identity element axiom then $e=e^{\prime}$.
(2) Show that the inverse a^{-1} to $a \in G$ is unique.

Problem 2. Find as many non-isomorphic groups of the given order n as you can for $n=$
(a) 3 , (b) $4,(\mathrm{c}) 5,(\mathrm{~d}) 6$, (e) 7 , (f) 8 , (g) 17

Do your best on Problem 2. We shall have a Math Auction on Thursday, you'll be bidding for your solutions with the TAC bucks.
TACs - don't miss your chance to win back some TAC bucks, have an extra group ready under your sleeve.

