Definition. The dihedral group D_n ($n \geq 3$) is the group of symmetries of a regular n-sided polygon.

Exercise 1. In this exercise we shall study the group D_3.

(1) List all symmetries of an equilateral triangle, giving them “letter” names. For example, you can call counter-clockwise rotation by 120° by $\rho_{2\pi/3}$. Count the number of symmetries. Classify which symmetries are orientation-preserving, and which are orientation-reversing.

(2) What is the order of D_3?

(3) Compute the multiplication table for D_3.

Look at your multiplication table and convince yourself that D_3 is a NON-ABELIAN group. Do you know another name for D_3?

Definition. (Informal) We say that a group is generated by two elements x, y if any element of the group can be written as a product of x’s and y’s.

Exercise 2. Show that D_3 is generated by 2 elements: ρ, the rotation by $2\pi/3$, and r, the reflection through the median.

If you are done with D_3 and have time left, think about D_4:

Exercise 3. We shall now investigate the group D_4, the group of symmetries of a square.

(1) Find the order of the group D_4.

(2) Find two symmetries of a square such that all other symmetries can be obtained by consecutive compositions of these two. Write down every symmetry as a composition of the two you have chosen. Once you are done, you’ve established that D_4 is generated by 2 elements! The two chosen symmetries are the generators of D_4.

Date: July 30, 2013.

1